Hình chóp tam giác đều có đường cao bằng h, các mặt bên hợp với đáy một góc 45 ∘ . Tính diện tích đáy.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ A M ⊥ B C và S H ⊥ A M , khi đó ∆ S H M vuông cân tại H. Suy ra H M = H S = h ; A M = 3 h
Vậy S = 9 3 4 h 2
Đáp án D
Theo giả thiết ta có tam giác đáy ABC là tam giác đều.
Gọi I là trung điểm của cạnh BC và O là tâm của tam giác đều ABC. Theo giả thiết ta có SA = a. Đặt OI = r , SO = h , ta có AO = 2r và ∠ SIA = α .
Do đó
Vậy a 2 = r 2 tan 2 α + 4 r 2 = r 2 tan 2 α + 4
Ta suy ra
Gọi S xq là diện tích xung quanh của hình trụ ta có công thức S xq = 2 π rl trong đó
và
Vậy
Các mặt bên SAB, SBC , SCA là những phần của ba mặt phẳng không song song với trục và cũng không vuông góc với trục nên chúng cắt mặt phẳng xung quanh của hình trụ theo những cung elip. Các cung này có hình chiếu vuông góc trên mặt phẳng (ABC) tạo nên đường tròn đáy của hình trụ.
Đáp án C
Hướng dẫn giải:
Gọi H là tâm của đáy khi đó S H ⊥ ( A B C D ) .
Dựng H E ⊥ C D , H K ⊥ S E .
Khi đó C D ⊥ ( S H E )
Mặt khác A D = 2 H E = 2 a 2