Gọi M và m tương ứng là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = 2sin2x - cosx + 1 thì M.m bằng
A. 0
B. 25 8
C. 25 4
D. 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Phương pháp:
Biến đổi hàm số về hàm số bậc hai đối với cos x , đặt cos x = t và tìm GTLN, GTNN của hàm số với chú ý
Cách giải:
Ta có: y = 2 sin 2 x − cos x + 1
= 2 1 − cos 2 x − cos x + 1 = − 2 cos 2 x − cos x + 3
Đặt t = cos x − 1 ≤ t ≤ 1
y t = − 2 t 2 − t + 3 ⇒ y ' t = − 4 t − 1
y ' 0 = 0 ⇔ t = − 1 4 ∈ − 1 ; 1
⇒ M = max y = y − 1 4 = 25 8 ; m = min y = y 1 = 0 ⇒ M + m = 25 8
Chú ý khi giải:
HS thường nhầm lẫn khi tìm GTLN, GTNN của hàm số, hoặc ở bước đặt ẩn phụ quên không đặt điều kiện cho ẩn mới.
\(M=2\cdot\left(1-cos^2x\right)-cosx+1\)
\(=-2\cdot cos^2x-cosx+1\)
\(=-2\cdot\left(cos^2x+\dfrac{1}{2}cosx-\dfrac{1}{2}\right)\)
\(=-2\cdot\left(cos^2x+2\cdot cosx\cdot\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{9}{16}\right)\)
\(=-2\cdot\left(cosx+\dfrac{1}{4}\right)^2+\dfrac{9}{8}\)
-1<=cosx<=1
=>-3/4<=cosx+1/4<=5/4
=>0<=(cosx+1/4)^2<=25/16
=>0>=-2*cos(x+1/4)^2>=-25/8
=>9/8>=-2*cos(x+1/4)^2+9/8>=-25/8+9/8=-16/8=-2
=>M=9/8; m=-2
=>M+m=-7/8
Chọn B.
Tập xác định:
Bảng biến thiên:
Từ bảng biến thiên suy ra M = 0; m = - 5
Vậy T = m.M = 0
Đáp án A
Phương pháp:
- Tìm TXĐ
- Tìm nghiệm và điểm không xác định của y’
- Tính các giá trị tại 1 e 2 , tại , tại nghiệm của y’ . Tìm GTLN, GTNN trong các giá trị đó. e
- Tính tích M.m.
Cách giải:
TXĐ: D = (0;+∞)
Ta có:
Chọn A