tìm a,b E Z, biết :
ab-2b=10-3a
phải tìm tất cả các số nguyên a mới tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1/
a) ta có: \(A=\frac{15}{x-1}\)
Để A là phân số \(\Rightarrow x-1\ne0\)
\(\Rightarrow x\ne1\)
b) Nếu x = 7
\(\Rightarrow A=\frac{15}{7-1}\)
\(\Rightarrow A=\frac{15}{6}\)
Nếu x = -3
\(\Rightarrow A=\frac{15}{-3-1}\)
\(\Rightarrow A=\frac{15}{-4}\)
Nếu x = 4
\(\Rightarrow A=\frac{15}{4-1}\)
\(\Rightarrow A=\frac{15}{3}=5\)
c) Ta có: \(B=5\)
\(\Leftrightarrow A=\frac{15}{x-1}=5\)
\(\Leftrightarrow x-1=3\)
\(\Leftrightarrow x=4\)
Bài 2/
a) \(\frac{x}{3}=\frac{2}{6}\)
\(\Leftrightarrow6x=6\)
\(\Leftrightarrow x=1\)
b) \(-\frac{x}{14}=\frac{10}{-7}\)
\(\Leftrightarrow7x=140\)
\(\Leftrightarrow x=20\)
hok tốt!!
\(ab^2+b+7⋮a^2b+a+b\Leftrightarrow a\left(ab^2+b+7\right)-b\left(a^2b+a+b\right)⋮a^2b+a+b\Leftrightarrow7a-b^2⋮a^2b+a+b\left(1\right)\)
\(+,7a=b^2\Rightarrow\left(a;b\right)=\left(7k^2;7k\right)\left(k\text{ nguyên dương}\right)\)
\(+,7a>b^2\text{ từ 1}\Rightarrow7a-b^2\ge a^2b+a+b\Leftrightarrow6a\ge a^2b+b+b^2\text{ mà: b là số nguyên dương}\Rightarrow b< 3\Leftrightarrow b\in\left\{1;2\right\}\)
làm tiếp
\(+,7a< b^2\text{ từ (1)}\Rightarrow b^2-7a\ge a^2b+a+b\Leftrightarrow voli\text{ :)}.Tự\text{ kết luận}\)
a)
Các số nguyên x thỏa mãn là:
\(x\in\left\{-10;-9;-8;-7;-6;-5;-4;-3;-2;-1;0;1;2;3;4;5;6;7;8\right\}\)
Tổng các số nguyên trên là:
\((8-10).19:2=-19\)
b)
Các số nguyên x thỏa mãn là:
\(x\in\left\{-9;-8;-7;-6;-5;-4;-3;-2;-1;...;6;7;8;9;10\right\}\)
Tổng các số trên là:
\((10-9).20:2=10\)
c) Các số nguyên x thỏa mãn là:
\(x\in\left\{-15;-14;-13;-12;-11;-10;-9;-8;-7;-6;-5;...;12;13;14;15;16\right\}\)
Tổng các số nguyên đó là:
\((16-15).32:2=16\)