Cho hình bình hành ABCD. Đường tròn đi qua ba đỉnh A, B, C cắt đường thẳng CD tại P khác C. Chứng minh AP = AD.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Do ABCD là hình bình hành nên AB//CD
⇒ A B C ^ + B C P ^ = 180 o (hai góc trong cùng phía) (1)
+ ABCP là tứ giác nội tiếp
⇒ P A B ^ + B C P ^ = 180 o 2
Từ (1) và (2) suy ra: P A B ^ = A B C ^
+ Tứ giác ABCP có: AB//CP (vì AB//CD)
=> Tứ giác ABCP là hình thang.
Lại có: P A B ^ = A B C ^ nên ABCP là hình thang cân.
=> AP=BC (3)
Mà ABCD là hình bình hành => AD = BC (4)
Từ (3) và (4) suy ra AP=AD (đpcm).
Do tứ giác ABCP nội tiếp nên ta có:
+ = 180o (1)
Ta lại có: + = 180o (2)
(hai góc trong cùng phía tạo bởi cát tuyến CB và AB // CD)
Từ (1) và (2) suy ra: =
Vậy ABCP là hình thang cân, suy ra AP = BC (3)
nhưng BC = AD (hai cạnh đối đỉnh của hình bình hành) (4)
Từ (3) và (4) suy ra AP = AD.
Do tứ giác ABCP nội tiếp nên ta có:
+ = 180o (1)
Ta lại có: + = 180o (2)
(hai góc trong cùng phía tạo bởi cát tuyến CB và AB // CD)
Từ (1) và (2) suy ra: =
Vậy ABCP là hình thang cân, suy ra AP = BC (3)
nhưng BC = AD (hai cạnh đối đỉnh của hình bình hành) (4)
Từ (3) và (4) suy ra AP = AD.
Đường tròn đi qua 3 đỉnh A,B,C cắt đường thẳng CD tại P (gt)
=>ABCP là tứ giác nội tiếp
=>Góc APC+góc ABC =180 (1)
ABCD là hình bình hành (gt)
=>góc ADC = góc ABC hay góc ADP=góc ABC (vì D,P,C thẳng hàng theo gt) (2)
Từ (1) và (2) => góc APC + góc ADP=180 (3)
Mà góc APD+góc APC =180 (kề bù) (4)
Từ (3) và (4) =>góc APD=góc ADP
=> tam giác ADP cân tại A
=> AP=AD (đpcm)
+ Do ABCD là hình bình hành nên AB // CD
\(\Rightarrow\widehat{ABC}+\widehat{BCP}=180^o\) ( hai góc trong cùng phía ) (1)
+ ABPC là tứ giác nội tiếp
\(\Rightarrow\widehat{PAB}+\widehat{BCP}=180^o\)(2)
Từ (1) và (2) , suy ra : \(\widehat{PAB}=\widehat{ABC}\)
+ Tứ giác ABPC có : AB // CP ( Vì AB // CD )
=> Tứ giác ABCP là hình thang
Ta lại có : \(\widehat{PAB}=\widehat{ABC}\)nên ABCP là hình thang cân
=> AP = BC (3)
Mà ABCD là hình bình hành => AD = BC (4)
Từ (3) và (4)) , suy ra : \(AP=AD\left(đpcm\right)\)
Đường tròn đi qua 3 đỉnh A,B,C cắt đường thẳng CD tại P (gt)
=>ABCP là tứ giác nội tiếp
=>Góc APC+góc ABC =180 (1)
ABCD là hình bình hành (gt)
=>góc ADC = góc ABC hay góc ADP=góc ABC (vì D,P,C thẳng hàng theo gt) (2)
Từ (1) và (2) => góc APC + góc ADP=180 (3)
Mà góc APD+góc APC =180 (kề bù) (4)
Từ (3) và (4) =>góc APD=góc ADP
=> tam giác ADP cân tại A
=> AP=AD (đpcm)
1). Tứ giác OBCD nội tiếp và CO là phân giác góc B C D ^ , suy ra O B D ^ = O C D ^ = O C B ^ = O D B ^ , nên tam giác OBD cân tại O, do đó OB=OD (1).
Tứ giác OBCD nội tiếp O D C ^ = O B E ^ (cùng bù với góc OBC) (2).
Trong tam giác CEF có CO vừa là đường cao vừa là đường phân giác nên tam giác CEF cân tại .
Do A B ∥ C F ⇒ A E B ^ = A F C ^ = E A B ^ , suy ra tam giác ABE cân tại B, nên B E = B A = C D ( 3 )
a: Xét tứ giác AKCI có
AK//CI
AI//CK
Do đó: AKCI là hình bình hành