\(A=\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}\)
với giá trị nào của x thì A có nghĩa?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: x^2-1>=0
=>x>=1 hoặc x<=-1
\(A=\sqrt{x^2-1+2\sqrt{x^2-1}+1}-\sqrt{x^2-1-2\sqrt{x^2-1}+1}\)
\(=\left|\sqrt{x^2-1}+1\right|-\left|\sqrt{x^2-1}-1\right|\)
x>=căn 2
=>x^2>=2
=>x^2-1>=1
=>căn x^2-1>=1
=>căn(x^2-1)-1>=0
=>\(A=\sqrt{x^2-1}+1-\sqrt{x^2+1}+1=2\)
a) để căn thức có nghĩa thì \(3x^2+1\ge0\) (luôn đúng) nên căn luôn có nghĩa
b) để căn thức có nghĩa thì \(4x^2-4x+1\ge0\Rightarrow\left(2x-1\right)^2\ge0\) (luôn đúng)
nên căn luôn có nghĩa
c) để căn thức có nghĩa thì \(\dfrac{3}{x+4}\ge0\) mà \(3>0\Rightarrow x+4>0\Rightarrow x>-4\)
h) để căn thức có nghĩa thì \(x^2-4\ge0\Rightarrow x^2\ge4\Rightarrow\left|x\right|\ge2\)
i) để căn thức có nghĩa thì \(\dfrac{2+x}{5-x}\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2+x\ge0\\5-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}2+x\le0\\5-x< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-2\le x< 5\\\left\{{}\begin{matrix}x\le-2\\x>5\end{matrix}\right.\left(l\right)\end{matrix}\right.\Rightarrow-2\le x< 5\)
a) ĐKXĐ: \(x\in R\)
b) ĐKXĐ: \(x\in R\)
c) ĐKXĐ: x>-4
h) ĐKXĐ: \(\left[{}\begin{matrix}x\ge2\\x\le-2\end{matrix}\right.\)
a: ĐKXĐ: \(\left[{}\begin{matrix}x\ge6\\x\le2\end{matrix}\right.\)
b: ĐKXĐ: \(-1\le x\le1\)
c: ĐKXĐ: \(x\le-2\)
\(A=\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2x\sqrt{x^2-1}}\\ A=\sqrt{\left(\sqrt{x^2-1}+1\right)^2}-\sqrt{\left(\sqrt{x^2-1}-1\right)^2}\\ A=\left|\sqrt{x^2-1}+1\right|-\left|\sqrt{x^2-1}-1\right|\)
\(a,\) A có nghĩa \(\Leftrightarrow x^2-1\ge0\Leftrightarrow\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\)
\(b,x\ge\sqrt{2}\Leftrightarrow\sqrt{x^2-1}-1\ge\sqrt{\left(\sqrt{2}\right)^2-1}-1=0\\ \Rightarrow A=\sqrt{x^2-1}+1-\left(\sqrt{x^2-1}-1\right)=2\)
a, ĐKXĐ: \(x^2-3\ge0\Rightarrow x^2\ge3\Rightarrow x\ge\sqrt{3}\)
b, \(\left\{{}\begin{matrix}x-2\ne0\\x-2\ge0\end{matrix}\right.\Rightarrow x-2>0\Rightarrow x>2\)
c, \(\left\{{}\begin{matrix}3-2x\ne0\\\dfrac{1}{3-2x}\ge0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}2x\ne3\\3-2x>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ne\dfrac{3}{2}\\x< \dfrac{3}{2}\end{matrix}\right.\)
\(\sqrt{x^2-3}\)
ĐKXĐ: x > 1
\(\dfrac{x}{x-2}+\sqrt{x-2}\)
ĐKXĐ: x > 2
\(\sqrt{\dfrac{1}{3-2x^2}}\)
ĐKXĐ: x < 1,224744871 \(\approx\) 1,22
\(A=\sqrt{x^2-1+2\sqrt{x^2-1}+1}-\sqrt{x^2-1-2\sqrt{x^2-1}+1}\)
\(=\sqrt{\left(\sqrt{x^2-1}+1\right)^2}-\sqrt{\left(\sqrt{x^2-1}-1\right)^2}\)
\(=\left|\sqrt{x^2-1}+1\right|-\left|\sqrt{x^2-1}-1\right|\)
a) A có nghĩa <=> \(x^2-1\ge0\Leftrightarrow x^2\ge1\Leftrightarrow\orbr{\begin{cases}x\ge1\\x\le-1\end{cases}}\)
b) Nếu \(x\ge\sqrt{2}\)khi đó \(\sqrt{x^2-1}-1\ge\sqrt{\left(\sqrt{2}\right)^2-1}-1=0\)
Ta có: \(A=\sqrt{x^2-1}+1-\left(\sqrt{x^2-1}-1\right)=2\)
a) ĐK; x>1; x<-1
b)\(A=\sqrt{x^2-1+2\sqrt{x^2-1}+1}-\sqrt{x^2-1-2\sqrt{x^2-1}+1}=\sqrt{\left(\sqrt{x^2-1}+1\right)^2}-\sqrt{\left(\sqrt{x^2-1}-1\right)^2}\)\(=\sqrt{x^2-1}+1-\left|\sqrt{x^2-1}-1\right|\)
Nếu \(x\ge\sqrt{2}\Rightarrow x^2\ge2\Leftrightarrow x^2-1\ge1\Leftrightarrow\sqrt{x^2-1}\ge1\Leftrightarrow\sqrt{x^2-1}-1\ge0\Rightarrow\left|\sqrt{x^2-1}-1\right|=\sqrt{x^2-1}-1\)
\(\Leftrightarrow A=\sqrt{x^2-1}+1-\sqrt{x^2-1}+1=2\)
Đúng nha
\(ĐK:\left\{{}\begin{matrix}x^2-1+2\sqrt{x^2-1}+1\ge0\\x^2-1-2\sqrt{x^2-1}+1\ge0\\x^2-1\ge0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left(\sqrt{x^2-1}+1\right)^2\ge0\\\left(\sqrt{x^2-1}-1\right)^2\ge0\\x^2\ge1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\)
ĐK:⎧⎪⎨⎪⎩x2−1+2√x2−1+1≥0x2−1−2√x2−1+1≥0x2−1≥0⇔⎧⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪⎩(√x2−1+1)2≥0(√x2−1−1)2≥0x2≥1⇔[x≥1x≤−1