Cho\(a_1;a_2;a_3;....;a_n\) là các số nguyên và\(b_1;b_2;b_3;....;b_n\) cũng là các số nguyên đó nhưng lấy theo thứ tự khác.Hãy chứng tỏ rằng nếu n là số lẻ thì\(\left(a_1-a_2\right)\left(a_2-a_3\right)\left(a_3-a_4\right)....\left(a_n-b_n\right)\) là số chẵn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Sửa lại đề \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=......=\frac{a_{n-1}}{a_n}=\frac{a_n}{a_1}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=..........=\frac{a_{n-1}}{a_n}=\frac{a_n}{a_1}=\frac{a_1+a_2+......+a_{n-1}+a_n}{a_2+a_3+........+a_n+a_1}=1\)( vì \(a_1+a_2+.......+a_n\ne0\))
\(\Rightarrow a_1=a_2\); \(a_2=a_3\); ........ ; \(a_{n-1}=a_n\); \(a_n=a_1\)
\(\Rightarrow a_1=a_2=........=a_n\)( đpcm )
b) Vì \(a_1=a_2=.......=a_n\)\(\Rightarrow a_1^{10}=a_2^{10}=.......=a_n^{10}\)
Ta có: \(A=\frac{a_1^{10}+a_2^{10}+.........+a_n^{10}}{\left(a_1+a_2+.......+a_n\right)^{10}}=\frac{n.a_1^{10}}{\left(n.a_1\right)^{10}}=\frac{n.a_1^{10}}{n^{10}.a_1^{10}}=\frac{n}{n^{10}}=\frac{1}{n^9}\)
Vậy \(A=\frac{1}{n^9}\)
\(a_1+a_2+a_3+..+a_{2015}=0\)\(0\)
\(\Rightarrow\left(a_1+a_2\right)+...+\left(a_1+a_{2015}\right)\)\(=\frac{\left(2015-1\right)}{2}+1=1008\)
\(\Rightarrow a_1+\left(a_1+a_2+..+a_{2015}\right)=1008\)
\(\Rightarrow a_1=1008\)
Ta có:
\(a_1+a_2+...+a_{2015}=0\)
\(\Leftrightarrow\left(a_1+a_2\right)+\left(a_3+a_4\right)+...+\left(a_{2013}+a_{2014}\right)+\left(a_{2015}+a_1\right)-a_1=0\)
\(\Leftrightarrow1+1+...+1-a_1=0\)
\(\Leftrightarrow1008-a_1=0\)
\(\Leftrightarrow a_1=1008\)
\(S-P=a_1^3-a_1+a_2^3-a_2+...+a_n^3-a_n\)
\(=a_1\left(a_1-1\right)\left(a_1+1\right)+a_2\left(a_2-1\right)\left(a_2+1\right)+...+a_n\left(a_n-1\right)\left(a_n+1\right)\)
Do \(a_k\left(a_k-1\right)\left(a_k+1\right)\) là tích 3 số nguyên liên tiếp nên luôn chia hết cho 6
\(\Rightarrow S-P⋮6\)
Mà \(P⋮6\Rightarrow S⋮6\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_9}{a_1}=\frac{a_1+a_2+...+a_9}{a_2+a_3+...+a_1}=1\)
Ta có: \(\frac{a_1}{a_2}=1\Rightarrow a_1=a_2\) (1)
\(\frac{a_2}{a_3}=1\Rightarrow a_2=a_3\) (2)
..........
\(\frac{a_9}{a_1}=1\Rightarrow a_9=a_1\) (9)
Từ (1),(2),...(9) suy ra a1 = a2 = a3 = .... = a9 (đpcm)
a) Đặt \(d=\left(a_1,a_2,...,a_n\right)\Rightarrow\left\{{}\begin{matrix}a_1=dx_1\\a_2=dx_2\\...\\a_n=dx_n\end{matrix}\right.\) (với \(\left(x_1,x_2,...,x_n\right)=1\)).
Ta có \(A_i=\dfrac{A}{a_i}=\dfrac{d^nx_1x_2...x_n}{dx_i}=d^{n-1}\dfrac{x_1x_2...x_n}{x_i}=d^{n-1}B_i\forall i\in\overline{1,n}\).
Từ đó \(\left[A_1,A_2,...,A_n\right]=d^{n-1}\left[B_1,B_2,...,B_n\right]\).
Mặt khác do \(\left(x_1,x_2,...,x_n\right)=1\Rightarrow\left[B_1,B_2,...B_n\right]=x_1x_2...x_n\).
Vậy \(\left(a_1,a_2,...,a_n\right)\left[A_1,A_2,...,A_n\right]=d.d^{n-1}x_1x_2...x_n=d^nx_1x_2...x_n=A\).
Chả biết đúng hay sai! Cứ làm vậy
Ta có: \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{n-1}}{a_n}=\frac{a_n}{a_1}\)
\(=\frac{a_1+a_2+...+a_{n-1}+a_n}{a_2+a_3+..+a_n+a_1}=1\Rightarrow a_1=a_2=...=a_n\) (theo t/c tỉ dãy số bằng nhau)
Do đó:
a) \(\frac{a_1^2+a_2^2+...+a_n^2}{\left(a_1+a_2+...+a_n\right)^2}=\frac{na_1^2}{\left(na_1\right)^2}=\frac{na_1^2}{n^2a_1^2}=\frac{1}{n}\)
b) \(\frac{a_1^7+a_2^7+...+a_n^7}{\left(a_1+a_2+...+a_n\right)^7}=\frac{na_1^7}{\left(na_1\right)^7}=\frac{na_1^7}{n^7a_1^7}=\frac{n}{n^7}\)
Bạn gì có nhãn "CTV" gì ấy trả lời đúng không vậy mn? Đang bí bài này...=((