Tìm giá trị lớn nhất của hàm số y = x 3 ( 8 - x ) trên đoạn [0; 8]
A. 4 4 3
B. 5 5 3
C. 6 2 3
D. 10 2 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án là A.
Ta có: y , = 1 + 2 sin x cos x = 1 + sin 2 x
y , = 0 ⇔ x = - π 4 + k π , k ∈ ℤ
Vì x ∈ 0 ; π nên x = 3 π 4
Tính được: y ( 0 ) = 0 ; y ( π ) = π ; y ( 3 π 4 ) = 3 π 4 + 1 2
Vậy: m a x [ 0 ; π ] y = y ( π ) = π .
Đáp án là C.
• Ta có: y , = 1 2 x + 1 - 1 2 3 - x , cho y , = 0 ⇔ x = 1 ∈ - 1 ; 3
• Tính được: y ( - 1 ) = 2 ; y ( 3 ) = 2 ; y ( 1 ) = 2 2
Vậy m a x y [ - 1 ; 3 ] = 2 2
f(x) = 2sinx + sin2x trên đoạn [0; 3 π /2]
f′(x) = 2cosx + 2cos2x = 4cos(x/2).cos3(x/2)
f′(x) = 0
⇔
Ta có: f(0) = 0,
Từ đó ta có: min f(x) = −2 ; max f(x) = 3 3 /2
Chọn đáp án A
Từ giả thiết
Suy ra
Từ (1) và (2) suy ra 1 + f 2 x = sin x + C
Thay x = 0 vào ta được:
do f 0 = 3
Suy ra
do hàm số f x liên tục, không âm trên 0 ; π 2
Đặt t = sin x
Xét hàm số g t = t 2 + 4 t + 3 trên 1 2 ; 1
Ta có
⇒ Hàm số g t đồng biến trên 1 2 ; 1
Khi đó
Ta có: y(0) = y(8) = 0, y(2) = 6 2 3
Chọn C