Gọi S là tập hợp tất cả các giá trị của m sao cho 10 m ∈ ℤ và phương trình 2 log m x − 5 2 x 2 − 5 x + 4 = log m x − 5 x 2 + 2 x − 6 có nghiệm duy nhất. Tìm số phần tử của S
A. 15
B. 14
C. 13
D. 16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(mx-5>0\) ; \(x>-2\)
\(log_{mx-5}\left(x^2-6x+12\right)=log_{mx-5}\left(x+2\right)\)
\(\Rightarrow x^2-6x+12=x+2\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
TH1: \(x=2\) là nghiệm duy nhất \(\Rightarrow\left\{{}\begin{matrix}m.2-5>0\\m.5-5< 0\end{matrix}\right.\) \(\Rightarrow\) ktm
TH2: \(x=5\) là nghiệm duy nhất \(\Rightarrow\left\{{}\begin{matrix}m.2-5< 0\\m.5-5>0\end{matrix}\right.\)
\(\Rightarrow1< m< \dfrac{5}{2}\Rightarrow m=2\)
=>x^2-[(m-1)+(m-5)]x+m^2-6m+5<=0
=>x(x-m+1)-(m-5)(x-m+1)<=0
=>(x-m+1)(x-m+5)<=0
=>m-5<=x<=m-1
=>S=[m-5;m-1]
(3;5) là tập con của S
=>m-5>=3 và m-1<=5
=>m>=8 và m<=6
=>Loại
Chọn A
Phương pháp:
- Tìm điều kiện xác định.
- Giải phương trình tìm nghiệm và tìm điều kiện để phương trình có nghiệm duy nhất.
Đáp án A.
Phương trình đã cho tương đương với
Để phương trình có nghiệm duy nhất
Do 10 m ∈ ℤ nên có 15 giá trị m thỏa mãn yêu cầu bài toán.
Đáp án A.
Phương trình đã cho tương đương với
2 log m x − 5 2 x 2 − 5 x + 4 = log m x − 5 x 2 + 2 x − 6
⇔ 0 < m x − 5 ≠ 1 2 x 2 − 5 x + 4 = x 2 + 2 x − 6 > 0 ⇔ 0 < m x − 5 ≠ 1 x 2 − 7 x + 10 = 0 ⇔ 0 < m x − 5 ≠ 1 x = 2 x = 5 .
Để phương trình có nghiệm duy nhất
⇔ 0 < 2 m − 5 ≠ 1 5 m − 5 ≤ 0 ∨ 5 m − 5 = 1 0 < 5 m − 5 ≠ 1 2 m − 5 ≤ 0 ∨ 2 m − 5 = 1 ⇔ 10 < 10 m ≠ 12 ≤ 35 10 m = 30 .
Do 10 m ∈ ℤ nên có 15 giá trị m thỏa mãn yêu cầu bài toán