K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2017

Đáp án A.

Phương trình đã cho tương đương với

2 log m x − 5 2 x 2 − 5 x + 4 = log m x − 5 x 2 + 2 x − 6

⇔ 0 < m x − 5 ≠ 1 2 x 2 − 5 x + 4 = x 2 + 2 x − 6 > 0 ⇔ 0 < m x − 5 ≠ 1 x 2 − 7 x + 10 = 0 ⇔ 0 < m x − 5 ≠ 1 x = 2 x = 5 .  

Để phương trình có nghiệm duy nhất

⇔ 0 < 2 m − 5 ≠ 1 5 m − 5 ≤ 0 ∨ 5 m − 5 = 1 0 < 5 m − 5 ≠ 1 2 m − 5 ≤ 0 ∨ 2 m − 5 = 1 ⇔ 10 < 10 m ≠ 12 ≤ 35 10 m = 30 .  

Do 10 m ∈ ℤ   nên có 15 giá trị m thỏa mãn yêu cầu bài toán

31 tháng 1 2018

Chọn A

Phương pháp:

- Tìm điều kiện xác định.

- Giải phương trình tìm nghiệm và tìm điều kiện để phương trình có nghiệm duy nhất.

27 tháng 8 2019

6 tháng 1 2019

13 tháng 1 2017

21 tháng 9 2018

Chọn đáp án A

12 tháng 10 2019

13 tháng 8 2019

Đáp án B

Điều kiện  x + 5 ≥ 0 4 − x ≥ 0 ⇔ − 5 ≤ x ≤ 4

Xét hàm số  f x = x + 5 + 4 − x ; x ∈ − 5 ; 4

Ta có:

f ' x = 1 2 x + 5 − 1 2 4 − x ; f ' x = 0 ⇔ 4 − x = x + 5 ⇔ x = − 1 2

Tính các giá trị  f − 5 = 3 ; f 4 = 3 ; f − 1 2 = 3 2

⇒ max − 5 ; 4 f x = f − 1 2 = 3 2

Vậy để phương trình m ≤ f x  có nghiệm  m ≤ max − 5 ; 4 f x ⇔ m ≤ 3 2

11 tháng 9 2018

17 tháng 6 2018