Phân tích thành nhân tử trên tập số phức:
a) u 2 + v 2
b) u 4 − v 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ngộ ak ng ta muốn nâng cao kiến thức thì ms đi học thêm ai như bn........
\(x^4-x^3-2x-4\)
\(=x^4-x^3-2x^2+2x^2-2x-4\)
\(=x^2\left(x^2-x-2\right)+2\left(x^2-x-2\right)\)
\(=\left(x^2-x-2\right)\left(x^2+2\right)\)
\(=\left(x^2+x-2x-2\right)\left(x^2+2\right)\)
\(=\left[x\left(x+1\right)-2\left(x+1\right)\right]\left(x^2+2\right)\)
\(=\left(x-2\right)\left(x+1\right)\left(x^2+2\right)\)
a) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\)
\(=\left(x+1\right)\left[3x\left(x+1\right)-5x^2+7\right]\)
\(=\left(x+1\right)\left(3x^2+3x-5x^2+7\right)\)
\(=\left(x+1\right)\left(-2x^2+3x+7\right)\)
\(=-\left(x+1\right)\left(2x^2-3x-7\right)\)
b) \(\left(x+y\right)\left(2x-y\right)-\left(3x-y\right)\left(y-2x\right)\)
\(=\left(x+y\right)\left(2x-y\right)+\left(3x-y\right)\left(2x-y\right)\)
\(=\left(2x-y\right)\left(x+y+3x-y\right)\)
\(=4x\left(2x-y\right)\)
c) \(5u\left(u-v\right)^2+10u^2\left(v-u\right)^2\)
\(=5u\left(u-v\right)^2+10u^2\left(u-v\right)^2\)
\(=5u\left(u-v\right)^2\left(1+2u\right)\)
Trả lời:
a, 3x ( x + 1 )2 - 5x2 ( x + 1 ) + 7 ( x + 1 )
= ( x + 1 )[ 3x ( x + 1 ) - 5x2 + 7 ]
= ( x + 1 )( 3x2 + 3x - 5x2 + 7 )
= ( x + 1 )( - 2x2 + 3x + 7 )
b, ( x + y )( 2x - y ) - ( 3x - y )( y - 2x )
= ( x + y )( 2x - y ) + ( 3x - y )( 2x - y )
= ( 2x - y )( x + y + 3x - y )
= 4x ( 2x - y )
c, 5u ( u - v )2 + 10u2 ( v - u )2
= 5u ( u - v )2 + 10u2 ( u - v )2
= 5u ( u - v )2( 1 + 2u )
a) x4 + 1
= (x2)2 + 2x2 + 1 - 2x2
= (x2 +1)2 - 2x2
\(=\left(x^2+1\right)^2-\left(\sqrt{2}\right)^2x^2\) \(=\left(x^2+1+\sqrt{2}x\right).\left(x^2+1-\sqrt{2}x\right)\)
a. Giống bạn CÔNG CHÚA ÔRI
b. \(x^4+2\)
\(=\left(x^2\right)^2+2x^2\cdot\sqrt{2}+\left(\sqrt{2}\right)^2-2x^2\cdot\sqrt{2}\)
\(=\left(x^2+\sqrt{2}\right)^2-2x^2\cdot\sqrt{2}\)
\(=\left(x^2+\sqrt{2}\right)^2-\left(\sqrt{2}x\cdot\sqrt[4]{2}\right)^2\)
\(=\left(x^2+\sqrt{2}-\sqrt{2}x\cdot\sqrt[4]{2}\right)\left(x^2+\sqrt{2}+\sqrt{2}x\cdot\sqrt[4]{2}\right)\)
\(x^5-3x^4-x^3-x^2+3x+1\)
\(=\left(x^5-x^2\right)-\left(3x^4-3x\right)-\left(x^3-1\right)\)
\(=x^2\left(x^3-1\right)-3x\left(x^3-1\right)-\left(x^3-1\right)\)
\(=\left(x^3-1\right)\left(x^2-3x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)\left[\left(x-\frac{3}{2}\right)^2-\frac{13}{4}\right]\)
\(=\left(x-1\right)\left(x^2+x+1\right)\left(x-\frac{3}{2}-\frac{\sqrt{13}}{2}\right)\left(x-\frac{3}{2}+\frac{\sqrt{13}}{2}\right)\)
\(x^5-3x^4-x^3-x^2+3x+1\)\(1\)\(=\left(x^5-x^4\right)-\left(2x^4-2x^3\right)-\left(3x^3-3x^2\right)-\left(4x^2-4x\right)-\left(x-1\right)\)
\(=x^4\left(x-1\right)-2x^3\left(x-1\right)-3x^2\left(x-1\right)-4x\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(x^4-2x^3-3x^2-4x-1\right)\)
a) u 2 + v 2 = u 2 − ( i v ) 2 = (u − iv)(u + iv)
b) u 4 − v 4 = ( u 2 − v 2 )( u 2 + v 2 )
= (u − v)(u + v)(u − iv)(u + iv)