Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^8+3x^3+1\)
\(=x^8-x^4+4x^4+4\)
\(=\left(x^4-1\right)\cdot\left(x^4+1\right)+4\cdot\left(x^4+1\right)\)
\(=\left(x^4+1\right)\cdot\left(x^4-1+4\right)\)
\(=\left(x^4+1\right)\cdot\left(x^4+3\right)\)
\(x^3-3x^2+1-3x=\left(x^3+1\right)-3x^2-3x\)
\(=\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)=\left(x+1\right)\left(x^2-x+1-3x\right)=\left(x+1\right)\left(x^2-4x+1\right)\)
\(=x^5-2x^4+x^3-x^4+2x^3-x^2\)
\(=x^3\left(x^2-2x+1\right)-x^2\left(x^2-2x+1\right)\)
\(=\left(x^2-2x+1\right)\left(x^3-x^2\right)\)
\(=\left(x-1\right)^2x^2\left(x-1\right)=\left(x-1\right)^3x^2\)
\(=x^2\left(x^3-1\right)-3x^3\left(x-1\right)\)
\(=x^2\left(x-1\right)\left(x^2+x+1-3x\right)\)
\(=x^2\left(x-1\right)\left(x^2-2x+1\right)\)
\(=x^2\left(x-1\right)\left(x-1\right)^2\)
\(=x^2\left(x-1\right)^3\)
a) \(=x^4-14x^2+40-72=x^4-14x^2-32=\left(x-4\right)\left(x+4\right)\left(x^2+2\right)\)
b) \(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1=\left(x^2+5x\right)^2+2\left(x^2+5x\right)+1=\left(x^2+5x+1\right)^2\)
c) \(=x^4+3x^3-3x^2+3x^3+9x^2-9x+x^2+3x-3-5=x^4+6x^3+7x^2-6x-8=\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x+4\right)\)
a: Ta có: \(\left(x^2-4\right)\left(x^2-10\right)-72\)
\(=x^4-14x^2-32\)
\(=\left(x^2-16\right)\left(x^2+2\right)\)
\(=\left(x-4\right)\left(x+4\right)\left(x^2+2\right)\)
b: Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
\(=\left(x^2+5x+6\right)\left(x^2+5x+4\right)+1\)
\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)+24+1\)
\(=\left(x^2+5x+1\right)^2\)
mình biết nội quy rồi nên đưng đăng nội quy
ai chơi bang bang 2 kết bạn với mình
mình có nick có 54k vàng đang góp mua pika
ai kết bạn mình cho
a.
\(=\left(x+1\right)^3-\left(3z\right)^3\)
\(=\left(x+1+3z\right)\left[\left(x+1\right)^2+3z\left(x+1\right)+9z^2\right]\)
\(=\left(x+3z+1\right)\left(x^2+2x+1+3zx+3z+9z^2\right)\)
b.
\(=\left(x-y\right)^2-z\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-z\right)\)
c.
\(=x^4-1+4x^2-4\)
\(=\left(x^2-1\right)\left(x^2+1\right)+4\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2+5\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)
a) Ta có: \(x^3+3x^2+3x+1-27z^3\)
\(=\left(x+1\right)^3-\left(3z\right)^3\)
\(=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)
b) Ta có: \(x^2-2xy+y^2-zx+yz\)
\(=\left(x-y\right)^2-z\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-z\right)\)
c) Ta có: \(x^4+4x^2-5\)
\(=x^4+4x^2+4-9\)
\(=\left(x^2+2\right)^2-3^2\)
\(=\left(x^2-1\right)\left(x^2+5\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)
\(x^4-x^2+2x+2\)
\(=x^4-2x^3+2x^2+2x^3-4x^2+4x+x^2-2x+2\)
\(=\left(x^4-2x^3+2x^2\right)+\left(2x^3-4x^2+4x\right)+\left(x^2-2x+2\right)\)
\(=x^2\left(x^2-2x+2\right)+2x\left(x^2-2x+2\right)+\left(x^2-2x+2\right)\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+1\right)\)
\(=\left(x^2-2x+2\right)\left(x+1\right)^2\)
\(x^5-3x^4-x^3-x^2+3x+1\)
\(=\left(x^5-x^2\right)-\left(3x^4-3x\right)-\left(x^3-1\right)\)
\(=x^2\left(x^3-1\right)-3x\left(x^3-1\right)-\left(x^3-1\right)\)
\(=\left(x^3-1\right)\left(x^2-3x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)\left[\left(x-\frac{3}{2}\right)^2-\frac{13}{4}\right]\)
\(=\left(x-1\right)\left(x^2+x+1\right)\left(x-\frac{3}{2}-\frac{\sqrt{13}}{2}\right)\left(x-\frac{3}{2}+\frac{\sqrt{13}}{2}\right)\)
\(x^5-3x^4-x^3-x^2+3x+1\)\(1\)\(=\left(x^5-x^4\right)-\left(2x^4-2x^3\right)-\left(3x^3-3x^2\right)-\left(4x^2-4x\right)-\left(x-1\right)\)
\(=x^4\left(x-1\right)-2x^3\left(x-1\right)-3x^2\left(x-1\right)-4x\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(x^4-2x^3-3x^2-4x-1\right)\)