Bài 1 : Thực hiện phép tính(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)Bài 2 : Tìm x biết(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot...
Đọc tiếp
Bài 1 : Thực hiện phép tính
(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)
(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
Bài 2 : Tìm x biết
(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)
(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot x=\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}\)
(3) \(\frac{x}{\left(a+5\right)\left(4-a\right)}=\frac{1}{a+5}+\frac{1}{4-a}\)
(4) \(\frac{x+2}{11}+\frac{x+2}{12}+\frac{x+2}{13}=\frac{x+2}{14}+\frac{x+2}{15}\)
(5) \(\frac{x+1}{2015}+\frac{x+2}{2014}+\frac{x+3}{2013}+\frac{x+4}{2012}+4=0\)
Bài 3 :
(1) Cho : A =\(\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{1}{9}\); B =\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\)
CMR : \(\frac{A}{B}\)Là 1 số nguyên
(2) Cho : D =\(\frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2000}\)CMR : \(D< \frac{3}{4}\)
Bài 4 : Ký hiệu [x] là số nguyên lớn nhất không vượt quá x , gọi là phần nguyên của x.
VD : [1.5] =1 ; [3] =3 ; [-3.5] = -4
(1) Tính :\(\left[\frac{100}{3}\right]+\left[\frac{100}{3^2}\right]+\left[\frac{100}{3^3}\right]+\left[\frac{100}{3^4}\right]\)
(2) So sánh : A =\(\left[X\right]+\left[X+\frac{1}{5}\right]+\left[X+\frac{2}{5}\right]+\left[X+\frac{3}{5}\right]+\left[X+\frac{4}{5}\right]\)và B = [5x]. Biết x=3.7
Kí hiệu sai, phải là [a]
+) Vì \(\left(\frac{1}{2}\right)^2>0;\left(\frac{1}{3}\right)^2>0;\left(\frac{1}{4}\right)^2>0;...;\left(\frac{1}{2014}\right)^2>0\)
\(\Rightarrow\left(\frac{1}{2}\right)^2+\left(\frac{1}{3}\right)^2+...+\left(\frac{1}{2014}\right)^2>0\)
\(\Rightarrow a>0^{\left(1\right)}\)
+) Ta có: \(\left(\frac{1}{2}\right)^2<\frac{1}{1.2};\left(\frac{1}{3}\right)^2<\frac{1}{2.3};...;\left(\frac{1}{2014}\right)^2<\frac{1}{2013.2014}\)
\(\Rightarrow\left(\frac{1}{2}\right)^2+\left(\frac{1}{3}\right)^2+...+\left(\frac{1}{2014}\right)^2<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2013.2014}\)
\(\Rightarrow a<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)
\(\Rightarrow a<1-\frac{1}{2014}<1^{\left(2\right)}\)
Từ \(^{\left(1\right)}\) và \(^{\left(2\right)}\) => 0 < a < 1
=> [a] = 0