K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2019

8cos2x + 2sinx – 7 = 0 (1)

⇔ 8(1 – sin2x) + 2sinx – 7 = 0

⇔ 8sin2x - 2sinx – 1 = 0 (Phương trình bậc hai với ẩn sin x)

Giải bài 3 trang 37 sgk Đại số 11 | Để học tốt Toán 11

Vậy phương trình có tập nghiệm

{Giải bài 3 trang 37 sgk Đại số 11 | Để học tốt Toán 11 + k2π; Giải bài 3 trang 37 sgk Đại số 11 | Để học tốt Toán 11 + k2π; arcsinGiải bài 3 trang 37 sgk Đại số 11 | Để học tốt Toán 11 + k2π; π - arcsinGiải bài 3 trang 37 sgk Đại số 11 | Để học tốt Toán 11 + k2π (k ∈ Z).

27 tháng 4 2019

  Giải bài 5 trang 37 sgk Đại số 11 | Để học tốt Toán 11

Vậy phương trình có tập nghiệm 

Giải bài 5 trang 37 sgk Đại số 11 | Để học tốt Toán 11 (k ∈ Z)

16 tháng 8 2017

3 cos 2 x   -   2 sin x   +   2   =   0     ⇔   3 ( 1   -   sin 2 x )   -   2 sin x   +   2   =   0     ⇔   3 sin 2 x   +   2 sin x   -   5   =   0     ⇔   ( sin x   -   1 ) ( 3 sin x   +   5 )   =   0     ⇔   sin x   =   1     ⇔   x   =   π / 2   +   k 2 π ,   k   ∈   Z

NV
10 tháng 7 2021

\(2sinx-1=0\Leftrightarrow sinx=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

Do \(x\in\left(-\dfrac{\pi}{2};\pi\right)\Rightarrow x=\left\{\dfrac{\pi}{6};\dfrac{5\pi}{6}\right\}\)

24 tháng 5 2021

`2sin x+cosx=0`

`<=> sinx + 1/2 cosx=0`

Có: `a^2+b^2=1^2+(1/2)^2=5/4 \ne 1`

`=>` PTVN.

24 tháng 5 2021

\(2sinx+cosx=0\)

\(\Leftrightarrow\dfrac{2}{\sqrt{5}}.sinx+\dfrac{1}{\sqrt{5}}cosx=0\)

Đặt \(cos\alpha=\dfrac{2}{\sqrt{5}}\) và \(sin\alpha=\dfrac{1}{\sqrt{5}}\) (vì \(\left(\dfrac{2}{\sqrt{5}}\right)^2+\left(\dfrac{1}{\sqrt{5}}\right)^2=1\))

pttt: \(sinx.cos\alpha+cosx.sin\alpha=0\)

\(\Leftrightarrow sin\left(x+\alpha\right)=0\)

\(\Rightarrow x=-arc.sin\alpha+k\pi\left(k\in Z\right)\)
(phải không?)

12 tháng 10 2019

2sinx – 3 = 0 ⇔ sin⁡ x = 3/2 , vô nghiệm vì |sin⁡x| ≤ 1

31 tháng 7 2018

28 tháng 1 2017

2.sin x + cos x = 1

Giải bài 5 trang 41 sgk Đại số 11 | Để học tốt Toán 11

Vì Giải bài 5 trang 41 sgk Đại số 11 | Để học tốt Toán 11 nên tồn tại α thỏa mãn Giải bài 5 trang 41 sgk Đại số 11 | Để học tốt Toán 11

(1) trở thành:

Giải bài 5 trang 41 sgk Đại số 11 | Để học tốt Toán 11

Vậy phương trình có nghiệm {k2π; 2α+k2π/k ∈ Z }

với α thỏa mãn Giải bài 5 trang 41 sgk Đại số 11 | Để học tốt Toán 11

NV
17 tháng 7 2021

ĐKXĐ: \(\left\{{}\begin{matrix}x\ne\dfrac{\pi}{2}+k2\pi\\x\ne-\dfrac{\pi}{6}+k2\pi\\x\ne\dfrac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(\dfrac{cosx-2sinx.cosx}{1-2sin^2x+sinx}=\sqrt{3}\)

\(\Leftrightarrow\dfrac{cosx-sin2x}{cos2x+sinx}=\sqrt{3}\)

\(\Rightarrow cosx-sin2x=\sqrt{3}cos2x+\sqrt{3}sinx\)

\(\Leftrightarrow cosx-\sqrt{3}sinx=\sqrt{3}cos2x+sin2x\)

\(\Leftrightarrow\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx=\dfrac{\sqrt{3}}{2}cos2x+\dfrac{1}{2}sin2x\)

\(\Leftrightarrow cos\left(x+\dfrac{\pi}{3}\right)=cos\left(2x-\dfrac{\pi}{6}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{6}=x+\dfrac{\pi}{3}+k2\pi\\2x-\dfrac{\pi}{6}=-x-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\left(loại\right)\\x=-\dfrac{\pi}{18}+\dfrac{k2\pi}{3}\end{matrix}\right.\)

17 tháng 7 2021

ĐKXĐ : \(sinx\ne1;-\dfrac{1}{2}\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{2}+2k\pi\\x\ne\dfrac{-\pi}{6}+2k\pi;\dfrac{7\pi}{6}+2k\pi\end{matrix}\right.\)   

\(\Leftrightarrow x\ne\dfrac{-\pi}{6}+\dfrac{2}{3}k\pi\)( k thuộc Z ) 

P/t đã cho \(\Leftrightarrow\dfrac{cosx-sin2x}{1-2sin^2x+sinx}=\sqrt{3}\) 

\(\Leftrightarrow cosx-sin2x=\sqrt{3}\left(cos2x+sinx\right)\)

\(\Leftrightarrow cosx-\sqrt{3}sinx=\sqrt{3}cos2x+sin2x\)

\(\Leftrightarrow\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx=\dfrac{\sqrt{3}}{2}cos2x+\dfrac{1}{2}sin2x\)

\(\Leftrightarrow cos\left(x+\dfrac{\pi}{3}\right)=cos\left(2x+\dfrac{\pi}{6}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{6}=x+\dfrac{\pi}{3}+2k\pi\\2x+\dfrac{\pi}{6}=-x-\dfrac{\pi}{3}+2k\pi\end{matrix}\right.\) ( k thuộc Z ) 

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+2k\pi\\x=\dfrac{-\pi}{6}+\dfrac{2}{3}k\pi\left(L\right)\end{matrix}\right.\)

Vậy ...

18 tháng 12 2019

Đáp án:B.

Với f(x) =  x 3  + 5x + 6 thì vì f'(x) = 3 x 2  + 5 > 0, ∀ x ∈ R nên hàm số f(x) luôn đồng biến trên R. Mặt khác f(-1) = 0. Vậy phương trình f(x) = 0 có nghiệm duy nhất trên R.