K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔEAD cân tại E

=>góc EAD=góc EDA=(180-108)/2=36 độ

ΔBAC cân tại B

=>góc BAC=góc BCA=(180-108)/2=36 độ

=>góc DAC=108-36-36=36 độ

=>góc EAD=góc DAC=góc CAB

b: góc CAE=36+36=72 độ

=>góc CAE+góc AED=180 độ

=>AC//ED

=>ED//AF

góc ABD+góc BAE=180 độ

=>AE//BF

=>AE//DF

mà ED//AF

và AE=ED

nên AEDF là hình thoi

a: ΔEAD cân tại E

=>góc EAD=góc EDA=(180-108)/2=36 độ

ΔBAC cân tại B

=>góc BAC=góc BCA=(180-108)/2=36 độ

=>góc DAC=108-36-36=36 độ

=>góc EAD=góc DAC=góc CAB

b: góc CAE=36+36=72 độ

=>góc CAE+góc AED=180 độ

=>AC//ED

=>ED//AF

góc ABD+góc BAE=180 độ

=>AE//BF

=>AE//DF

mà ED//AF

và AE=ED

nên AEDF là hình thoi

cj kham khảo

a) Nối AC; AD

Ngũ giác ABCDE được chia thành 3 tam giác: ΔABC, ΔACD, ΔADE. Tổng các góc trong của mỗi tam giác bằng 1800

Tổng các góc trong của ngũ giác ABCDE là 1800. 3 = 5400

b) Vì ABCDE là ngũ giác đều nên

\(\widehat{A}=\widehat{B}=\widehat{C}=\widehat{D}=\widehat{E}=\frac{540^0}{5}=108^0\)

Mặt khác ΔABC cân tại B nên 

\(\widehat{BAC}+\widehat{BCA}=\frac{180^0-108^0}{2}=36^0\)

\(\Rightarrow\widehat{CAE}=\widehat{ACD}=108^0-36^0=72^0\)

\(\Rightarrow\widehat{EDC}+\widehat{ADC}=108^0+72^2=180^0\)

Suy ra ED // AC hay ED // CF.

Chứng minh tương tự ta có EF // CD

Mặt khác ED = DC (gt)

nên tứ giác CEFD là hình thoi.

27 tháng 5 2020

1 1 1 1 A H B D K C O

a, Xét 2 tam giác : AOB và COD

\(\widehat{A_1}=\widehat{C_1}\)( 2 góc so le trong )

\(\widehat{B_1}=\widehat{D_1}\)( 2 góc so le trong )

\(\Rightarrow\Delta AOB~\Delta COD\left(gg\right)\)

\(\Rightarrow\frac{AO}{OC}=\frac{OB}{OD}\)

\(\Rightarrow AO.OD=OC.OB\)

b, \(\Delta AOB~\Delta COD\Rightarrow\frac{OA}{OC}=\frac{AB}{CD}\left(1\right)\)

\(\Delta AOH\)và \(\Delta COK\)có :

\(\Rightarrow\frac{OH}{OK}=\frac{AO}{OC}\left(2\right)\)

Từ (1)(2) => \(\frac{OH}{OK}=\frac{AB}{CD}\)

31 tháng 10 2018

Số đo mỗi góc của ngũ giác đều là 1080.

Ta có tam giác ABC cân tại B

⇒ A 1 ^ = C 1 ^ = ( 180 0 − 108 0 ) : 2 = 36 0 ⇒ E A C ^ = D C A ^     (1)

Chứng minh tương tự ta được:

C 3 ^ = E ^ 1 = 36 0 ⇒ C 2 ^ = 36 0  

Có C 2 ^ = E 1 ^ = 36 0 ⇒ E D / / A C       (2)

Từ (1) và (2), suy ra ACDE là hình thang cân (ĐPCM)

(Các khác: Có thể chứng minh hình thang ACDE có hai đường chéo bằng nhau)

* Chứng minh tương tự ta có J E F ^ = E F G ^ = F G H ^ = G H I ^ = H I J ^ = I J E ^ .

Vậy tứ giác CDEK là hình bình hành

mà CD = DE, suy ra hình bình hành CDEK là hình thoi (ĐPCM)

3: Xét ΔIOD và ΔIBC có

góc ICB=góc IDO

góc OID=góc BIC

=>ΔIOD đồng dạng với ΔIBC

=>IO/IB=ID/IC

=>IO*IC=IB*ID

30 tháng 5 2023

IO*IC=IB*IF

12 tháng 11 2017

đề bài thiếu thì phải