Cho các phân số 6 n + 8 ; 7 n + 9 ; 8 n + 10 ; .... 35 n + 37 ; Tìm số tự nhiên n nhỏ nhất để các phân số trên tối giản.
A. 35
B. 34
C. 37
D. 36
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải: Các phân số trên có dạng: a/{a+(n+2)} vì các phân số tối giản nên a và (n+2) nguyên tố cùng nhau
Vì {a+(n+2)-a}= n+2 với
a=6,7,8,...,35
Do đó (n+2) nguyên tố cùng nhau với các số 6,7,8,..,35
Số tự nhiên (n+2) nhỏ nhất thỏa mãn tính chất này là 37, ta có:
(n+2)=37-> n=35
Vậy số tự nhiên cần tìm là n=35
Đáp án cần chọn là: A
Các phân số đã cho đều có dạng a a + ( n + 2 )
Và tối giản nếu a và n+2 nguyên tố cùng nhau
Vì: [a + (n + 2)] – a = n + 2 với a = 6;7;8;.....;34;35
Do đó n+2 nguyên tố cùng nhau với các số 6;7;8;.....;34;35
Số tự nhiên n+2 nhỏ nhất thỏa mãn tính chất này là 37
Ta có n + 2 = 37 nên n = 37 – 2 = 35
Vậy số tự nhiên nhỏ nhất cần tìm là 35
tui đọc ko hiểu lắm, bn giải thịch hộ tui cái chỗ này: Số tự nhiên n+2 nhỏ nhất thỏa mãn tính chất này là 37