Cho đoạn AD có 2 điểm B và C thuộc AD sao cho AB=CD ( cách đều A và D). Điểm M ở ngoài đoạn AD. Chứng minh rằng: MA+MD> MB+MC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình trả lời đại k mình nhé
vi B và C nằm trên đoạn thẳng AD cho điểm M tùy ý mình cho M là trung điểm của AD và BC vì B và C nằm trong đoạn AD =>đoạn AD dài hơn đoạn BC. M là trung điểm của cả hai đoạn nên MA+MD sẽ lớn hơn hoặc bằng MB+MC
xin các bạn giúp mình với , mình sẽ k cho các bn , mình đang cần rất gấp
Gọi I là trung điểm của BC
Trên tia đối của IM lấy điểm N sao cho IM = IN
Dễ chứng minh \(\Delta\)IAM = \(\Delta\)IDN (c.g.c) nên MA = MD (hai cạnh tương ứng) (1)
C nằm trong \(\Delta\)MDN nên MC + CN < MD + ND (2)
Thật dễ dàng khi c/m: \(\Delta\)IBM = \(\Delta\)ICN (c.g.c) => MB = NC (hai cạnh tương ứng) (3)
Từ (1), (2) và (3) suy ra MA + MD > MB + MC (đpcm)