K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2019

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 1)

- Phương trình tiếp tuyến Δ của  C m  tại điểm có hoành độ  x 0   =   2 là: 

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 1)

- Suy ra diện tích tam giác OAB là:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 1)

- Theo giả thiết bài toán ta suy ra:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 1)

Chọn A.

19 tháng 6 2017

- Hàm số đã cho xác định với ∀x ∈ R.

- ta có:

   Đề kiểm tra 15 phút Đại số 11 Chương 5 có đáp án (Đề 3)

- Phương trình tiếp tuyến tại điểm có hoành độ x = 1 là:

   y = (m+ 6)(x – 1) + 3m + 1

- Tiếp tuyến này đi qua A(2; - 1) nên có:

   Đề kiểm tra 15 phút Đại số 11 Chương 5 có đáp án (Đề 3)

- Vậy m = -2 là giá trị cần tìm.

NV
2 tháng 4 2021

\(y'=\dfrac{-3-m}{\left(x-1\right)^2}\) ; \(y\left(2\right)=m+5\) ; \(y'\left(2\right)=-m-3\)

Phương trình tiếp tuyến tại điểm có hoành độ \(x=2\):

\(y=\left(-m-3\right)\left(x-2\right)+m+5\)

\(\Leftrightarrow y=-\left(m+3\right)x+3m+11\)

Để tiếp tuyến cắt 2 trục tạo thành tam giác \(\Rightarrow m\ne\left\{-3;-\dfrac{11}{3}\right\}\)

Gọi A và B lần lượt là giao điểm của tiếp tuyến với Ox và Oy

\(\Rightarrow A\left(\dfrac{3m+11}{m+3};0\right)\) ; \(B\left(0;3m+11\right)\)

\(\Rightarrow OA=\left|\dfrac{3m+11}{m+3}\right|\) ; \(OB=\left|3m+11\right|\)

\(S_{OAB}=\dfrac{1}{2}OA.OB=\dfrac{25}{2}\Rightarrow\dfrac{\left(3m+11\right)^2}{\left|m+3\right|}=25\)

\(\Leftrightarrow\left(3m+11\right)^2=25\left|m+3\right|\Rightarrow\left[{}\begin{matrix}\left(3m+11\right)^2=-25\left(m+3\right)\\\left(3m+11\right)^2=25\left(m+3\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}9m^2+91m+196=0\\9m^2+41m+46=0\end{matrix}\right.\) \(\Rightarrow m=...\)

20 tháng 1 2017

Chọn D.

 

12 tháng 4 2021

Pt hoành độ giao điểm của đồ thị hàm số (C) với đường thẳng d là:

\(\dfrac{x-1}{x+1}=m-x\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\g\left(x\right)=x^2+\left(2-m\right)x-m-1=0\left(1\right)\end{matrix}\right.\)

Đồ thị (C) cắt đường thẳng d tại 2 điểm phân biệt <=> pt(1) có 2 nghiệm phân biệt khác -1

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\g\left(-1\right)\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2+8>0\\-2\ne0\end{matrix}\right.\)

Khi đó: \(x_A,x_B\) là nghiệm của pt (1). Vì tiếp tuyến tại A và B //

\(\Rightarrow f'\left(x_A\right)=f'\left(x_B\right)\Leftrightarrow\dfrac{2}{\left(x_A+1\right)^2}=\dfrac{2}{\left(x_B+1\right)^2}\Leftrightarrow\left[{}\begin{matrix}x_A=x_B\left(loai\right)\\x_A+x_B=-2\end{matrix}\right.\)

Theo định lí Viet ta có: 

\(x_A+x_B=m-2\Rightarrow m-2=-2\Leftrightarrow m=0\)

a:Sửa đề: y=x^3-3x^2+2

y'=3x^2-3*2x=3x^2-6x

y=2

=>x^3-3x^2=0

=>x=0 hoặc x=3

=>y'=0 hoặc y'=3*3^2-6*3=27-18=9

A(0;2); y'=0; y=2

Phương trình tiếp tuyến có dạng là;

y-2=0(x-0)

=>y=2

A(3;2); y'=9; y=2

Phương trình tiếp tuyến có dạng là:

y-2=9(x-3)

=>y=9x-27+2=9x-25

b: Tiếp tuyến tại M song song với y=6x+1

=>y'=6

=>3x^2-6x=6

=>x^2-2x=2

=>x=1+căn 3 hoặc x=1-căn 3

=>y=0 hoặc y=0

M(1+căn 3;0); y=0; y'=6

Phương trình tiếp tuyến là:

y-0=6(x-1-căn 3)=6x-6-6căn3

M(1-căn 3;0); y=0; y'=6

Phương trình tiếp tuyến là:

y-0=6(x-1+căn 3)

=>y=6x-6+6căn 3

15 tháng 11 2017

+Ta có đạo hàm y’ = 3x2- 6mx+ 3( m+ 1)  .

 Do K thuộc ( C)  và có hoành độ bằng -1, suy ra K( -1; -6m-3)

Khi đó tiếp tuyến tại K  có phương trình

∆: y= ( 9m+ 6) x+ 3m+ 3

Đường thẳng ∆ song song với đường thẳng d

⇒ 3 x + y = 0 ⇔ y = - 3 x ⇔ 9 m + 6 = - 3 3 m + 3 ≠ 0 ⇔ m = - 1 m ≠ - 1

Vậy không tồn tại m thỏa mãn đầu bài.

Chọn D.

NV
4 tháng 8 2021

Đường tròn (S) tâm \(I\left(-1;-3\right)\) bán kính \(R=3\)

Thế tọa độ A vào pt (S) thỏa mãn nên A nằm trên đường tròn

Ta cần tìm B, C sao cho chi vi ABC lớn nhất

Đặt \(\left(AB;AC;BC\right)=\left(c;b;a\right)\Rightarrow\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}=2R\)

\(\Rightarrow a+b+c=2R\left(sinA+sinB+sinC\right)\)

Mặt khác ta có BĐT quen thuộc \(sinA+sinB+sinC\le\dfrac{3\sqrt{3}}{2}\) 

Dấu "=" xảy ra khi tam giác ABC đều

\(\Rightarrow a=b=c=2R.sin60^0=3\sqrt{3}\)

Khi đó I đồng thời là trọng tâm kiêm trực tâm \(\Rightarrow\left\{{}\begin{matrix}BC\perp AI\\d\left(A;BC\right)=\dfrac{a\sqrt{3}}{2}=\dfrac{9}{2}\end{matrix}\right.\)

\(\Rightarrow\) Phương trình BC có dạng \(y=-\dfrac{3}{2}\)

Hay (Cm) có 1 tiếp tuyến là \(y=-\dfrac{3}{2}\) (hệ số góc bằng 0 nên tiếp tuyến này đi qua 2 cực tiểu)

\(\Rightarrow m=-1\)

7 tháng 5 2019

- Phương trình hoành độ giao điểm của d và (C)  là

Theo định lí Viet ta có x1+x2=-m; 

Giả sử A( x1; y1); B( x2; y2).

Ta có nên tiếp tuyến của (C)  tại A và B có hệ số góc lần lượt là và  .Vậy

 

Dấu "=" xảy ra  khi và chỉ khi m= -1.

Vậy k1+ k2  đạt giá trị lớn nhất bằng -2 khi m= -1.

Chọn A.

 

9 tháng 11 2017

+ Phương trình hoành độ giao điểm của d  và (C)  là

+ Theo định lí Viet ta có  x1+ x2= -m ; x1.x2= ( -m-1) /2.

 Gọi A( x1; y1) ; B( x2: y 2)  .

+ Ta có y ' = - 1 ( 2 x - 1 ) 2  , nên tiếp tuyến của ( C)  tại A và B  có hệ số góc lần lượt là

 

k 1 = - 1 ( 2 x 1 - 1 ) 2 ;   k 2 = - 1 ( 2 x 2 - 1 ) 2

Dấu "=" xảy ra khi và chỉ khi m= -1.

Vậy k1+ k2 đạt giá trị lớn nhất bằng - 2 khi m= -1.

Chọn B.