Chứng minh rằng: x 2 + 2 y 2 + 2 x y + 1 > 0 ; ∀ x , y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+y+z)^2=x^2+y^2+z^2
=>2(xy+yz+xz)=0
=>xy+xz+yz=0
=>xy/xyz+xz/xyz+yz/xyz=0
=>1/x+1/y+1/z=0
Ta có: \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)
+) TH1: x + y + z = 0 => x + y = -z ; x + z = -y; y + z = -x
Do đó: \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=\frac{x}{-x}+\frac{y}{-y}=\frac{z}{-z}=-3\)\(\ne1\)loại
+) TH2: x + y + z \(\ne0\)
\(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)
<=> \(\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{z+x}+\frac{z\left(x+y+z\right)}{x+y}=x+y+z\)
<=> \(\frac{x^2}{y+z}+x+\frac{y^2}{z+x}+y+\frac{z^2}{x+y}+z=x+y+z\)
<=> \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\)( đpcm)
(x+y+z)^2=x^2+y^2+z^2
=>x^2+y^2+z^2+2(xy+yz+xz)=x^2+y^2+z^2
=>2(xy+yz+xz)=0
=>xy+yz+xz=0
1/x+1/y+1/z
=(xz+yz+xy)/xyz
=0/xyz=0
Theo bđt cauchy schwarz dạng engel
\(x^2+y^2=\frac{x^2}{1}+\frac{y^2}{1}\ge\frac{\left(x+y\right)^2}{1+1}=\frac{1}{2}\left(đpcm\right)\)
Dấu = xảy ra \(< =>x=y=\frac{1}{2}\)
Theo Bunhiacopski ta có:
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\Rightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{1}{2}\)
Đẳng thức xảy ra tại x=y=1/2
Trình bày khác xíu :))
1/
Xét hiệu $(x+1)^2-4x^2=(x+1)^2-(2x)^2=(x+1-2x)(x+1+2x)$
$=(1-x)(3x+1)$
Do $x\in (0;1)$ nên $1-x>0; 3x+1>0$
$\Rightarrow (x+1)^2-4x^2>0\Rightarrow (x+1)^2> 4x^2$
2/
Xét hiệu:
$(1+x+y)^2-4(x^2+y^2)=x^2+y^2+1+2x+2y+2xy-4x^2-4y^2$
$=1+2x+2y+2xy-3x^2-3y^2$
$=2x(1-x)+2y(1-y)+1+2xy-x^2-y^2$
Vì $x,y\in (0;1)$ nên:
$2x(1-x)>0$
$2y(1-y)>0$
$(x-1)(y-1)>0\Rightarrow xy+1> x+y=x.1+y.1> x^2+y^2$
$\Rightarrow 1+xy-x^2-y^2>0$
$\Rightarrow 1+2xy-x^2-y^2>0$
Suy ra: $2x(1-x)+2y(1-y)+1+2xy-x^2-y^2>0$
$\Rightarrow (1+x+y)^2> 4(x^2+y^2)$
\(x^2+y^2-z^2>0\Rightarrow x^2+2xy+y^2-z^2>0\)
\(\Rightarrow\left(x+y\right)^2-z^2>0\)
\(\Rightarrow\left(x+y-z\right)\left(x+y+z\right)>0\)
Mà x;y;z>0 \(\Rightarrow x+y+z>0\)
\(\Rightarrow x+y-z>0\)