K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2017

a ) a n ( n + a ) = n + a − n n ( n + a ) = n + a n ( n + a ) − n n ( n + a ) = 1 n − 1 n + a

b ) 2 1.3 + 2 3.5 + ... 2 11.13 = 1 − 1 3 + 1 3 − 1 5 + ... + 1 11 − 1 13 = 12 13

21 tháng 5 2021

??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????////

30 tháng 11 2018

a ) 1 n ( n + 1 ) = n + 1 − n n ( n + 1 ) = n + 1 n ( n + 1 ) − n n ( n + 1 ) = 1 n − 1 n + 1

b ) 1 1.2 + 1 2.3 + ... 1 9.10 = 1 1 − 1 2 + 1 2 − 1 3 + ... + 1 9 − 1 10 = 9 10

20 tháng 12 2018

a ) 1 n ( n + 1 ) = n + 1 − n n ( n + 1 ) = n + 1 n ( n + 1 ) − n n ( n + 1 ) = 1 n − 1 n + 1

b ) 1 1.2 + 1 2.3 + ... 1 9.10 = 1 1 − 1 2 + 1 2 − 1 3 + ... + 1 9 − 1 10 = 9 10

18 tháng 11 2018

a ) a n ( n + a ) = n + a − n n ( n + a ) = n + a n ( n + a ) − n n ( n + a ) = 1 n − 1 n + a ≤

b ) 2 1.3 + 2 3.5 + ... 2 11.13 = 1 − 1 3 + 1 3 − 1 5 + ... + 1 11 − 1 13 = 12 13

2 tháng 6 2021

b)Đặt A=\(\dfrac{1}{2.4}\)+\(\dfrac{1}{4.6}\)+...+\(\dfrac{1}{2016.2018}\)

2A=\(\dfrac{2}{2.4}\)+\(\dfrac{2}{4.6}\)+...+\(\dfrac{2}{2016.2018}\)

2A=\(\dfrac{1}{2}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{6}\)+...+\(\dfrac{1}{2016}\)-\(\dfrac{1}{2018}\)

2A=\(\dfrac{1}{2}\)-\(\dfrac{1}{2018}\)

2A=\(\dfrac{504}{1009}\)

⇒A=\(\dfrac{252}{1009}\)

16 tháng 3 2017

a) Vì n.(n+1) = 1/n-1/n+1 suy ra n thuộc N      n khác 0

b) A=1/1*2+1/2*3+1/3*4+...+1/9.10

A=1/1-1/2+1/2-1/3+1/3-1/4+...+1/9-1/10

A=1-1/10=9/10

Vậy A = 9/10

29 tháng 3 2017

Ta có: Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Ta có: a/b > 1 nên a > b suy ra am > bm, suy ra ab + am > ab + bm.

Do đó Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Hay Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

24 tháng 9 2018

7 tháng 9 2019

a) Thực hiện quy đồng  a b = a ( b + m ) b ( b + m ) = a b + a m b 2 + b m ;

a + m b + m = b ( a + m ) b ( b + m ) = a b + b m b 2 + b m .  Vì a b  < 1=> a < b => ab +am < ab + bm

Từ đó thu được a b < a + m b + m

b)  437 564 < 437 + 9 564 + 9 = 446 573 .

21 tháng 10 2015

2,

+ n chẵn

=> n(n+5) chẵn 

=> n(n+5) chia hết cho 2

+ n lẻ

Mà 5 lẻ

=> n+5 chẵn => chia hết cho 2

=> n(n+5) chia hết cho 2

KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N

21 tháng 10 2015

3, 

A = n2+n+1 = n(n+1)+1

a, 

+ Nếu n chẵn

=> n(n+1) chẵn 

=> n(n+1) lẻ => ko chia hết cho 2

+ Nếu n lẻ

Mà 1 lẻ

=> n+1 chẵn

=> n(n+1) chẵn

=> n(n+1)+1 lẻ => ko chia hết cho 2

KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)

b, + Nếu n chia hết cho 5

=> n(n+1) chia hết cho 5

=> n(n+1)+1 chia 5 dư 1

+ Nếu n chia 5 dư 1

=> n+1 chia 5 dư 2

=> n(n+1) chia 5 dư 2

=> n(n+1)+1 chia 5 dư 3

+ Nếu n chia 5 dư 2

=> n+1 chia 5 dư 3

=> n(n+1) chia 5 dư 1

=> n(n+1)+1 chia 5 dư 2

+ Nếu n chia 5 dư 3

=> n+1 chia 5 dư 4

=> n(n+1) chia 5 dư 2

=> n(n+1)+1 chia 5 dư 3

+ Nếu n chia 5 dư 4

=> n+1 chia hết cho 5

=> n(n+1) chia hết cho 5

=> n(n+1)+1 chia 5 dư 1

KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)