(2 điểm): Một viên đạn pháo nổ ở độ cao 100m thành 2 mảnh: mảnh A có vận tốc v 1 = 60 m/s hướng thẳng đứng lên trên và mảnh B có vận tốc v 2 = 40m/s hướng thẳng đứng xuống dưới. Tính khoảng cách giữa 2 mảnh đó sau 0,5 s kể từ lúc đạn nổ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Chọn gốc tọa độ tại vị trí đạn nổ , chiều dương hướng thẳng lên trên và gốc thời gian là lúc đạn nổ . Phương trình chuyển động của 2 mảnh A và B là :
Khoảng cách H giữa 2 mảnh sau 0,5 s là : H = |yA - yB|= 100 . 0,5 = 50 m.
Chọn B.
Chọn gốc tọa độ tại vị trí đạn nổ , chiều dương hướng thẳng lên trên và gốc thời gian là lúc đạn nổ . Phương trình chuyển động của 2 mảnh A và B là :
Khoảng cách H giữa 2 mảnh sau 0,5 s là :
H = y A - y B = 100 . 0,5 = 50 m
Chọn B.
Chọn gốc tọa độ tại vị trí đạn nổ , chiều dương hướng thẳng lên trên và gốc thời gian là lúc đạn nổ . Phương trình chuyển động của 2 mảnh A và B là :
Khoảng cách H giữa 2 mảnh sau 0,5 s là : H = |yA – yB| = 100 . 0,5 = 50 m
Khi đạn nổ bỏ qua sức cản của không khí nên được coi như là một hệ kín. Vận tốc mảnh nhỏ trước khi nổ là
v 1 / 2 − v 1 2 = 2 g h ⇒ v 1 = v 1 / 2 − 2 g h ⇒ v 1 = 100 2 − 2.10.125 = 50 3 ( m / s )
Theo định luật bảo toàn động lượng
p → = p → 1 + p → 2
Với
p = m v = ( 2 + 3 ) .50 = 250 ( k g m / s ) p 1 = m 1 v 1 = 2.50 3 = 100 3 ( k g m / s ) p 2 = m 2 v 2 = 3. v 2 ( k g m / s )
Vì v → 1 ⊥ v → ⇒ p → 1 ⊥ p → theo pitago
⇒ p 2 2 = p 1 2 + P 2 ⇒ p 2 = p 1 2 + p 2 = ( 100 3 ) 2 + 250 2 = 50 37 ( k g m / s )
⇒ v 2 = p 2 3 = 50 37 3 ≈ 101 , 4 ( m / s )
Mà sin α = p 1 p 2 = 100 3 50 37 ⇒ α = 34 , 72 0
Khi đạn nổ bỏ qua sức cản của không khí nên được coi như là một hệ kín.
Vận tốc mảnh nhỏ trước khi nổ là:
v 1 / 2 = v 1 2 = 2 g h ⇒ v 1 = v 1 / 2 − 2 g h
⇒ v 1 = 100 2 − 2.10.125 = 50 3 m / s
+ Theo định luật bảo toàn động lượng: p → = p → 1 + p → 2
Với p = m v = 2 + 3 .50 = 250 k g . m / s
p 1 = m 1 v 1 = 2.50 3 = 100 3 k g . m / s p 2 = m 2 . v 2 = 3. v 2 k g . m / s
+ Vì v → 1 ⊥ v → 2 ⇒ p → 1 ⊥ p → Theo pitago
p 2 2 = p 1 2 + p 2 ⇒ p 2 = p 1 2 + p 2 = 100 3 2 + 250 2 = 50 37 k g . m / s
⇒ v 2 = p 2 3 = 50 37 3 ≈ 101 , 4 m / s + sin α = p 1 p 2 = 100 3 50 37 ⇒ α = 34 , 72 0
Chọn đáp án B
Bảo toàn động lượng ta có:
\(\overrightarrow{p}=\overrightarrow{p_1}+\overrightarrow{p_2}\)
\(\Rightarrow p^2=p_1^2+p_2^2+2\cdot p_1\cdot p_2\cdot cos\left(\overrightarrow{p_1;}\overrightarrow{p_2}\right)\) (1)
Có \(p=m\cdot v=2\cdot250=500\)kg.m/s
\(p_1=m_1\cdot v_1=1\cdot250=250kg.\)m/s
\(\left(1\right)\Rightarrow500^2=250^2+p_2^2+2\cdot250\cdot p_2\cdot cos60^o\)
\(\Rightarrow187500=p_2^2+250p_2\)
\(\Rightarrow\left[{}\begin{matrix}p_2\approx325,7\\p_2\approx-575,7\left(loại\right)\end{matrix}\right.\)
Theo hình ta có:
\(p_1\cdot cos\alpha=p_2\cdot sin\beta\)
\(\Rightarrow sin\beta=\dfrac{p_1\cdot cos\alpha}{p_2}=\dfrac{250\cdot cos\left(90-30\right)}{325,7}=0,38\)
\(\Rightarrow\beta\approx22,57^o\)
Mảnh thứ hai bay theo góc \(22,57^o\)
Refer:
\(m=2kg,v=250m/s,v_1=250m/s,α=60^o \)
Động lượng của viên đạn ban đầu:
\(p=m.v=2.250=500kg.m/s\)Động lượng của các mảnh :\(p_1=m_1.v_1=\dfrac{2}{2}.250=250(kg.m/s)\)
\(p_2=m_2.v_2=\dfrac{2}{2}.v_2=v_2(kg.m/s)\)
theo quy tắc hình bình hành ta có:
\(p_2=\sqrt{p_2+p^2_1+2.p.p_1.cosα}\)
\(=\sqrt{500^2+250^2+2.500.250.cos60}\)
\(=661,4(kg.m/s)\)
Vận tốc của mảnh 2:
\(p_2=v_2\Rightarrow v_2=661,4m/s\)Bay theo phương hợp với phương thẳng đứng:\(\dfrac{P}{sin α}=\dfrac{P_1}{sin β} \)
\(\Rightarrow sinβ=\dfrac{sin60.250}{500}=\dfrac{\sqrt{3}}{4} \)
\(\Rightarrow β=25^o39' \)
dạng này mình mới làm xong một bài nhé, bạn có thể lướt xuống tham khảo rồi áp dụng, không nên đăng cùng một loại câu hỏi nhiều lần
Chọn gốc tọa độ tại vị trí đạn nổ, chiều dương hướng thẳng lên trên và gốc thời gian là lúc đạn nổ. Phương trình chuyển động của 2 mảnh A và B là:
Khoảng cách H giữa 2 mảnh sau 0,5 s là : H = | y A – y B | = 100 . 0,5 = 50 m.