GTLN của biểu thứcA= \(\frac{6}{Ix-3I+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4. A=7-x/x-5=(-(x-5)+2)/x-5=-1+2/x-5
A nhỏ nhất khi 2/x-5 nhỏ nhất.mà 2/x-5 nho nhất khi x-5 lớn nhất(a)
TH1: x-5>0=>x>5=>2/x-5>0(1)
Th2:x-5<0=>x<5=>2/x-5<0(2)
(1), (2)=>x-5<0(b)
(a),(b)=>x-5=-1=>x=4
vậy A nhỏ nhất là -3
Bài 2 :
\(A=4x^2-2.2x.2+4+1\)
\(=\left(2x-2\right)^2+1\)
Thấy : \(\left(2x-2\right)^2\ge0\)
\(A=\left(2x-2\right)^2+1\ge1\)
Vậy \(MinA=1\Leftrightarrow x=1\)
\(B=\left(5x\right)^2-2.5x.1+1-4\)
\(=\left(5x-1\right)^2-4\)
Thấy : \(\left(5x-1\right)^2\ge0\)
\(\Rightarrow B=\left(5x-1\right)^2-4\ge-4\)
Vậy \(MinB=-4\Leftrightarrow x=\dfrac{1}{5}\)
\(C=\left(7x\right)^2-2.7x.2+4-5\)
\(=\left(7x-2\right)^2-5\)
Thấy : \(\left(7x-2\right)^2\ge0\)
\(\Rightarrow C=\left(7x-2\right)^2-5\ge-5\)
Vậy \(MinC=-5\Leftrightarrow x=\dfrac{2}{7}\)
\(1.\)
\(A=-x^2-10x+1=-\left(x^2+10x-1\right)\)
\(=-\left(x^2+2.5x+5^2-5^2-1\right)=-\left[\left(x+5\right)^2-26\right]\)
\(=-\left(x+5\right)^2+26\le26\) dấu "=" xảy ra<=>x=-5
\(B=-4x^2-6x-5=-4\left(x^2+\dfrac{6}{4}x+\dfrac{5}{4}\right)\)
\(=-4\left(x^2+2.\dfrac{3}{4}x+\dfrac{9}{16}+\dfrac{11}{16}\right)\)\(=-4\left[\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{6}\right]\le-\dfrac{11}{4}\)
\(C=-16x^2+8x-1=-16\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)\)
\(=-16\left(x^2-2.\dfrac{1}{4}x+\dfrac{1}{16}\right)=-16\left(x-\dfrac{1}{4}\right)^2\le0\)
dấu"=" xảy ra<=>x=1/4
a ) 2|x - 3| - 5 = 3 <=> 2|x - 3| = 8 <=> |x - 3| = 4 => x - 3 = ± 4
TH1 : x - 3 = 4 => x = 7
TH2 : x - 3 = - 4 => x = - 1
Vậy x = { - 1; 7 }
b ) 2|2x + 3| + |2x + 3| = 6 <=> 3|2x + 3| = 6 => |2x + 3| = 2 => 2x + 3 = ± 2
=> x = { - 5/2 ; - 1/2 }
c ) 3|x + 1|2 + |x + 1|2 = 16
4|x + 1|2 = 16
=> |x + 1|2 = 4 = 22 ( ko xét TH |x + 1| = - 2 vì |x + 1| ≥ 0 )
=> |x + 1| = 2 => x + 1 = ± 2 => x = { - 3; 1 }
Ta có :
\(\left|x-3\right|+2\ge2\)\(\Rightarrow\left(\left|x+3\right|+2\right)^2\ge4\)
\(\left|y+3\right|\ge0\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2017\ge4+0+2017\)
\(\Rightarrow P\ge2017\)
Dấu \("="\)\(\Leftrightarrow\)\(\hept{\begin{cases}\left(\left|x-3\right|+2\right)^2=4\\\left|y-3\right|=0\end{cases}}\)\(\)\(\hept{\begin{cases}\orbr{\begin{cases}\left|x-3\right|+2=2\\\left|x-3\right|+2=-2\end{cases}}\\y-3=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}\left|x-3\right|+2=2\\\left|x-3\right|+2=-2\left(L\right)\end{cases}}\\y-3=0\end{cases}}\)
\(A=\left(x^2-4x+4\right)-3=\left(x-2\right)^2-3\ge-3\\ A_{min}=-3\Leftrightarrow x=2\)
Biểu thức A ko có max