Xác định vị trí tương đối của hai đường tròn (C1): x2+ y2 – 4 = 0 và (C2): (x-3)2+ (y-4) 2= 25
A. Không cắt nhau.
B. Cắt nhau.
C. Tiếp xúc nhau.
D. Tiếp xúc ngoài.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường tròn (C1): x2+ y2 – 4= 0 có tâm O(0; 0) bán kính R= 2;
Đường tròn (C2) ( x -8) 2+ (y- 6)2= 4 có tâm I( 8; 6) bán kính R= 2.
Mà OI = 8 2 + 6 2 = 10
Ta thấy: OI> 2+2 nên 2 đường tròn đã cho không cắt nhau.
Chọn A.
Đường tròn (C1) có tâm và bán kính: I1=(0;0), và R1= 2; (C2) có tâm I2 (-10; 16) và bán kính R2= 1; khoảng cách giữa hai tâm .
Vậy 2 đường tròn đã cho không có điểm chung.
Chọn B.
a) Kẻ OH ⊥⊥ d
=> OH là khoảng cách từ d tới tâm đường tròn (O)
mà OH < R (3 < 5)
=> Đường thẳng d cắt đường tròn (O)
b) Xét ΔΔOAH vuông tại H có:
OH2+AH2=OA2OH2+AH2=OA2 (ĐL Pi-ta-go)
=> AH=OA2−OH2−−−−−−−−−−√=52−32−−−−−−√=4(cm)AH=OA2−OH2=52−32=4(cm)
Xét (O): AB là dây, OH ⊥⊥ AB
=> H trung điểm AB (quan hệ ⊥⊥ giữa đường kính và dây cung)
=> AB = 2AH = 8(cm)
c) Xét ΔΔABC có: O, H trung điểm AC, AB
=> OH là đường trung bình ΔΔABC
=> OH // BC mà OH ⊥⊥ AH
=> BC ⊥⊥ AH => ΔΔABC vuông tại B
=> AB2 + BC2 = AC2
=> BC=102−82−−−−−−−√=6(cm)BC=102−82=6(cm)
Xét ΔΔABC vuông tại B
có: sinC=ABAC=810=45⇒Cˆ=53o7′sinC=ABAC=810=45⇒C^=53o7′
=> Aˆ=36o52′A^=36o52′
d) Xét ΔΔACM vuông tại C: CB ⊥⊥ AM
có: AC2=AB⋅AMAC2=AB⋅AM (HTL tam giác vuông)
=> AM=AC2AB=1028=12,5(cm)AM=AC2AB=1028=12,5(cm)
lại có: AB + BM = AM ; AB = 8(cm)
=> BM = 4,5(cm)
Ta có: (C1): x2+ y2 – 4 = 0 có tâm O (0; 0) và bán kính R= 2;
Dường tròn (C2): (x-3)2+ (y-4) 2= 25 có tâm I( 3;4) và R= 5 nên OI= 5
Ta thấy: 5-2 < OI< 5+ 2
nên chúng cắt nhau.
Chọn B.