Cho hàm số y = f(x) liên tục trên ℝ và hàm số y = g x = x f x 2 có đồ thị trên đoạn [0;2] như hình vẽ bên. Biết diện tích miền được tô màu là S = 5 2 , tính tích phân I = ∫ 1 4 f x d x .
A. I = 5 4
B. I = 5 2
C. I = 5
D. I = 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt g ( x ) = 3 f ( x ) - x 3 . Hàm số ban đầu có dạng y=|g(x)|
Ta có g ' ( x ) = 3 f ' ( x ) - 3 x 2 .
Cho g'(x)=0 ⇔ [ x = 0 x = 1 x = 2
Dễ thấy g(0)=0. Ta có bảng biến thiên
Dựa vào BBT suy ra hàm số y=|g(x)| đồng biến trên khoảng (0;2) và a ; + ∞ với g(a)=0
Chọn đáp án C.
Chọn A
Ta có: g(x) = f(x-2017) - 2018x + 2019.
Nhận xét: tịnh tiến đồ thị hàm số y = f'(x) sang bên phải theo phương của trục hoành 2017 đơn vị ta được đồ thị hàm số y = f'(x-2017) . Do đó, số nghiệm của phương trình f'(x) = 2018 bằng số nghiệm của phương trình (*).
Dựa vào đồ thị ta thấy phương trình (*) có nghiệm đơn duy nhất hay hàm số đã cho có duy nhất 1 điểm cực trị.
Chọn C.
Ta có f'(x)= 0
(Trong đó -2 < a < 0 < b < c < 2)
Ta có bảng xét dấuDựa vào bảng xét dấu ta thấy hàm số y = f(x) có 3 cực trị.
Đáp án C
S = ∫ 1 2 x f x 2 d x = 5 2 ⇔ 5 2 = 1 2 ∫ 1 2 f x 2 d x 2 = 1 2 ∫ 1 4 f u d u = I 2 ⇒ I = 5 . .