biết 1/a+b = 1/b+c = 1/c+c. Tính Q= a+2021b+c/a+2022b+c
Các bn giúp mik với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: aba+b=bcb+c=aca+c⇒a+bab=b+cbc=a+cacaba+b=bcb+c=aca+c⇒a+bab=b+cbc=a+cac
⇒aab+bab=bbc+cbc=aac+cac⇒aab+bab=bbc+cbc=aac+cac
⇒1b+1a=1c+1b=1c+1a⇒1b+1a=1c+1b=1c+1a
⇒1a=1b=1c⇒a=b=c⇒1a=1b=1c⇒a=b=c
⇒M=ab+bc+caa2+b2+c2= a2+b2+c2a2+b2+c2=1
Áp dụng t/c dtsbn:
\(\dfrac{1}{a+b}=\dfrac{2}{b+c}=\dfrac{3}{c+a}=\dfrac{1+2+3}{2\left(a+b+c\right)}=\dfrac{6}{2\left(a+b+c\right)}=\dfrac{3}{a+b+c}\)
\(\Rightarrow\left\{{}\begin{matrix}3a+3b=a+b+c\\3b+3c=2a+2b+2c\\3a+3c=3a+3b+3c\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}c=2a\\b=0\end{matrix}\right.\)
\(Q=\dfrac{a+2021b+c}{a+2022b+c}=\dfrac{a+2a}{a+2a}=1\)
\(\frac{1}{a+b}=\frac{2}{b+c}=\frac{3}{c+a}=\frac{1+2+3}{2\left(a+b+c\right)}=\frac{3}{a+b+c}.\)
\(\Rightarrow\frac{3}{c+a}=\frac{3}{a+b+c}\Rightarrow c+a=a+b+c\Rightarrow b=0\)
\(\Rightarrow Q=\frac{a+2021b+c}{a+2022b+c}=\frac{a+c}{a+c}=1\)
Với \(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}b+c=-a\\c+a=-b\\a+b=-c\end{matrix}\right.\)
\(B=\dfrac{a+b}{a}\cdot\dfrac{a+c}{c}\cdot\dfrac{b+c}{b}=\dfrac{-abc}{abc}=-1\)
Với \(a+b+c\ne0\)
\(\dfrac{a+b-2021c}{c}=\dfrac{b+c-2021a}{a}=\dfrac{c+a-2021b}{b}=\dfrac{-2019\left(a+b+c\right)}{a+b+c}=-2019\\ \Leftrightarrow\left\{{}\begin{matrix}a+b-2021c=-2019c\\b+c-2021a=-2019a\\c+a-2021b=-2019b\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\c+a=2b\end{matrix}\right.\)
\(B=\dfrac{a+b}{a}\cdot\dfrac{a+c}{c}\cdot\dfrac{b+c}{b}=\dfrac{2a\cdot2b\cdot2c}{abc}=8\)
Với a+b+c=0⇔⎧⎪⎨⎪⎩b+c=−ac+a=−ba+b=−ca+b+c=0⇔{b+c=−ac+a=−ba+b=−c
B=a+ba⋅a+cc⋅b+cb=−abcabc=−1B=a+ba⋅a+cc⋅b+cb=−abcabc=−1
Với a+b+c≠0a+b+c≠0
a+b−2021cc=b+c−2021aa=c+a−2021bb=−2019(a+b+c)a+b+c=−2019⇔⎧⎪⎨⎪⎩a+b−2021c=−2019cb+c−2021a=−2019ac+a−2021b=−2019b⇔⎧⎪⎨⎪⎩a+b=2cb+c=2ac+a=2b
Ai biết cách làm, làm ơn ghi rõ ra dùm mik nhe. Cảm ơn nhiều trước.
\(a,b\)là hai nghiệm phân biệt của phương trình: \(x^2-2021x-c=0\).
Theo Viet:
\(\hept{\begin{cases}a+b=2021\\ab=-c\end{cases}}\)
\(\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=\frac{2021}{-c}\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{2021}{c}=0\)
\(\frac{1}{a+b}=\frac{1}{b+c}=\frac{1}{c+c}\Rightarrow\frac{1}{a+b}=\frac{1}{b+c}\Rightarrow a+b=b+c\)
\(\Rightarrow a=c\left(1\right)\)
\(\frac{1}{b+c}=\frac{1}{c+c}\Rightarrow b+c=c+c\Rightarrow c=b\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow a=b=c\)
\(Q=\frac{a+2021b+c}{a+2022b+c}=\frac{a+2021a+a}{a+2022a+a}\)
\(Q=\frac{a.\left(1+2021+1\right)}{a.\left(1+2022+1\right)}=\frac{2023}{2024}\)
Vậy, \(Q=\frac{2023}{2024}\)