Tính hợp lý biểu thức sau: M = 1 1 − x . 1 1 + x . 1 1 + x 2 . 1 1 + x 4 . 1 1 + x 8 . 1 1 + x 16 , với x ≠ ± 1 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
M = \(\frac{1}{1-x}\cdot\frac{1}{1+x}\cdot\frac{1}{1+x^2}\cdot\frac{1}{1+x^4}\cdot\frac{1}{1+x^8}\cdot\frac{1}{1+x^{16}}\)
M = \(\frac{1}{\left(1-x\right)\left(1+x\right)\left(1+x^2\right)\left(1+x^4\right)\left(1+x^8\right)\left(1+x^{16}\right)}\)
M = \(\frac{1}{\left(1-x^2\right)\left(1+x^2\right)\left(1+x^4\right)\left(1+x^8\right)\left(1+x^{16}\right)}\)
M = \(\frac{1}{\left(1-x^4\right)\left(1+x^4\right)\left(1+x^8\right)\left(1+x^{16}\right)}\)
M = \(\frac{1}{\left(1-x^8\right)\left(1+x^8\right)\left(1+x^{16}\right)}\)
M = \(\frac{1}{\left(1-x^{16}\right)\left(1+x^{16}\right)}\)
M = \(\frac{1}{1-x^{32}}\)
Bài 1:
-Kiểu dữ liệu phù hợp là kiểu số thực (real)
Bài 2:
a) a*x*x*x+b*x*x+c*x+d
b) 1/(1+x)*(1+x)-2/(x*x+1)
Bài 3: (Lười quá, nhường bạn khác nhé :D)
a: \(A=\left(\dfrac{1}{x-1}+\dfrac{x}{\left(x-1\right)\left(x+1\right)}\cdot\left(x+1\right)\cdot x+\dfrac{1}{x+1}\right)\cdot\dfrac{\left(x+1\right)^2}{2x+1}\)
\(=\left(\dfrac{1}{x-1}+\dfrac{x^2}{x-1}+\dfrac{1}{x+1}\right)\cdot\dfrac{\left(x+1\right)^2}{2x+1}\)
\(=\dfrac{\left(x^2+1\right)\left(x+1\right)+x-1}{\left(x+1\right)\left(x-1\right)}\cdot\dfrac{\left(x+1\right)^2}{2x+1}\)
\(=\dfrac{x^3+x^2+x+1+x-1}{\left(x-1\right)}\cdot\dfrac{x+1}{2x+1}\)
\(=\dfrac{x^3+x^2+2x}{x-1}\cdot\dfrac{x+1}{2x+1}=\dfrac{x\left(x^2+x+2\right)\left(x+1\right)}{\left(x-1\right)\left(2x+1\right)}\)
b: Khi x=1/2 thì \(A=\dfrac{\dfrac{1}{2}\left(\dfrac{1}{4}+\dfrac{1}{2}+2\right)\left(\dfrac{1}{2}+1\right)}{\left(\dfrac{1}{2}-1\right)\left(2\cdot\dfrac{1}{2}+1\right)}=-\dfrac{33}{16}\)
1: \(1+\sqrt{\dfrac{\left(x-1\right)^2}{x-1}}=1+\sqrt{x-1}\)
2: \(A=\sqrt{\left(x-2\right)^2}+\dfrac{x-2}{\sqrt{\left(x-2\right)^2}}\)
=\(\left|x-2\right|+\dfrac{x-2}{\left|x-2\right|}\)
TH1: x>2
A=x-2+(x-2)/(x-2)=x-2+1=x-1
TH2: x<2
A=2-x+(x-2)/(2-x)=2-x-1=1-x
3: \(C=\sqrt{m}-\sqrt{m-2\sqrt{m}+1}\)
\(=\sqrt{m}-\sqrt{\left(\sqrt{m}-1\right)^2}\)
\(=\sqrt{m}-\left|\sqrt{m}-1\right|\)
TH1: m>=1
\(C=\sqrt{m}-\sqrt{m}+1=1\)
TH2: 0<=m<1
\(C=\sqrt{m}+\sqrt{m}-1=2\sqrt{m}-1\)
Áp dụng (a-b) (a + b) = a 2 - b 2 . Ta có:
M = 1 1 − x 2 . 1 1 + x 2 . 1 1 + x 4 . 1 1 + x 8 . 1 1 + x 16
= 1 1 − x 16 . 1 1 + x 16 = 1 1 − x 32