Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(A=\frac{1+x+1-x}{\left(1-x\right)\left(1+x\right)}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(A=\frac{2}{1-x^2}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(A=\frac{2\left(x^2+1\right)+2.\left(x^2-1\right)}{\left(x^2+1\right)\left(1-x^2\right)}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(A=\frac{2\left(x^2+1\right)+2.\left(1-x^2\right)}{\left(x^2+1\right)\left(1-x^2\right)}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(A=\frac{4}{1-x^4}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(A=\frac{4\left(1+x^4\right)+4.\left(1-x^4\right)}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(A=\frac{8}{1-x^8}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(A=\frac{8\left(1+x^8\right)+8\left(1-x^8\right)}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{16}{1+x^{16}}\)
\(A=\frac{16}{1-x^{16}}+\frac{16}{1+x^{16}}\)
\(A=\frac{16\left(1+x^{16}\right)+16\left(1-x^{16}\right)}{\left(1-x^{16}\right)\left(x+x^{16}\right)}\)
\(A=\frac{32}{1-x^{32}}\)
\(\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{1+x+1-x}{\left(1+x\right)\left(1-x\right)}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{2}{1-x^2}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{2+2x^2+2-2x^2}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{4}{1-x^4}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{4+4x^4+4-4x^4}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{8}{1-x^8}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{8+8x^8+8-8x^8}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{16}{1+x^{16}}\)
\(=\frac{16}{1-x^{16}}+\frac{16}{1+x^{16}}\)
\(=\frac{16+16x^{16}+16-16x^{16}}{\left(1-x^{16}\right)\left(1+x^{16}\right)}\)
\(=\frac{32}{1-x^{32}}\)
\(P=\frac{1}{1-x}+\frac{1}{x+1}+\frac{2}{x^2+1}+\frac{4}{x^4+1}+\frac{8}{x^8+1}+\frac{16}{x^{16}+1}\)
\(P=\frac{x+1+1-x}{1-x^2}+\frac{2}{x^2+1}+\frac{4}{x^4+1}+\frac{8}{x^8+1}+\frac{16}{x^{16}+1}\)
\(P=\left(\frac{2}{1-x^2}+\frac{2}{x^2+1}\right)+\frac{4}{x^4+1}+\frac{8}{x^8+1}+\frac{16}{x^{16}+1}\)
\(P=\left(\frac{4}{1-x^4}+\frac{4}{x^4+1}\right)+\frac{8}{x^8+1}+\frac{16}{x^{16}+1}\)
\(P=\frac{8}{1-x^8}+\frac{8}{x^8+1}+\frac{16}{x^{16}+1}=\frac{8x^8+8+8-8x^8}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{16}{x^{16}+1}\)
\(P=\frac{16}{1-x^{16}}+\frac{16}{x^{16}+1}=\frac{32}{\left(1-x^{16}\right)\left(1+x^{16}\right)}=\frac{32}{1-x^{32}}\)
A = \(\frac{1+x+1-x}{\left(1-x\right)\left(1+x\right)}+\frac{2}{1+x^2}+...+\frac{16}{1+x^{16}}=\frac{2}{1-x^2}+\frac{2}{1+x^2}+..+\frac{16}{1+x^{16}}\)
\(=\frac{2+2x^2+2-x^2}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{4}{1+x^4}+..+\frac{16}{1+x^{16}}=\frac{4}{1-x^{^4}}+...+\frac{16}{1+x^{16}}\)
Tưng tự
= \(\frac{16}{1-x^{16}}+\frac{16}{1+x^{16}}=\frac{16+16x^{16}+16-16x^{16}}{1-x^{32}}=\frac{32}{1-x^{32}}\)
Ta có:\(\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{1+x}{\left(1-x\right)\left(1+x\right)}+\frac{1-x}{\left(1-x\right)\left(1+x\right)}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)\(=\frac{2}{\left(1-x\right)\left(1+x\right)}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{2}{1-x^2}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{2\left(1+x^2\right)}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{2\left(1-x^2\right)}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{2+2x^2}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{2-2x^2}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{2+2}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{4}{1-x^4}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{4\left(1+x^4\right)}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{4\left(1-x^4\right)}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{4+4x^4}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{4-4x^4}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{4+4}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{8}{1-x^8}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{8\left(1+x^8\right)}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{8\left(1-x^8\right)}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{16}{1+x^{16}}\)
\(=\frac{8+8x^8}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{8-8x^8}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{16}{1+x^{16}}\)
\(=\frac{8+8}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{16}{1+x^{16}}\)
\(=\frac{16}{1-x^{16}}+\frac{16}{1+x^{16}}\)
\(=\frac{16\left(1+x^{16}\right)}{\left(1-x^{16}\right)\left(1+x^{16}\right)}+\frac{16\left(1-x^{16}\right)}{\left(1-x^{16}\right)\left(1+x^{16}\right)}\)
\(=\frac{16+16}{\left(1-x^{16}\right)\left(1+x^{16}\right)}\)
\(=\frac{32}{1-x^{32}}\)
Ta có:
M = \(\frac{1}{1-x}\cdot\frac{1}{1+x}\cdot\frac{1}{1+x^2}\cdot\frac{1}{1+x^4}\cdot\frac{1}{1+x^8}\cdot\frac{1}{1+x^{16}}\)
M = \(\frac{1}{\left(1-x\right)\left(1+x\right)\left(1+x^2\right)\left(1+x^4\right)\left(1+x^8\right)\left(1+x^{16}\right)}\)
M = \(\frac{1}{\left(1-x^2\right)\left(1+x^2\right)\left(1+x^4\right)\left(1+x^8\right)\left(1+x^{16}\right)}\)
M = \(\frac{1}{\left(1-x^4\right)\left(1+x^4\right)\left(1+x^8\right)\left(1+x^{16}\right)}\)
M = \(\frac{1}{\left(1-x^8\right)\left(1+x^8\right)\left(1+x^{16}\right)}\)
M = \(\frac{1}{\left(1-x^{16}\right)\left(1+x^{16}\right)}\)
M = \(\frac{1}{1-x^{32}}\)