K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2018

Hướng dẫn giải

Chọn C.

TH1: Nếu cosx =0 có sin2x = 1 không thỏa mãn phương trình.

TH2:  chia cả hai vế của phương trình cho cos2x ta được:

1 tháng 4 2017

24 tháng 8 2017

Đáp án D

13 tháng 1 2018

21 tháng 11 2017

3 tháng 8 2018

Đáp án C

Nhận thấy cos x = 0 không phải là nghiệm của phương trình. Chia cả hai vế của phương trình cho cosx ta được

Vậy có 1 điểm biểu diễn nghiệm của phương trình trên đường tròn lượng giác.

21 tháng 6 2018

5 tháng 8 2019

Đáp án C

Nhận thấy cosx = 0 không phải là nghiệm của phương trình. Chia cả hai vế của phương trình cho cosx ta được

Vậy có 1 điểm biểu diễn nghiệm của phương trình trên đường tròn lượng giác.

5 tháng 9 2021

1.

\(sin^3x+cos^3x=1-\dfrac{1}{2}sin2x\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)=1-sinx.cosx\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(1-sinx.cosx\right)=1-sinx.cosx\)

\(\Leftrightarrow\left(1-sinx.cosx\right)\left(sinx+cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx.cosx=1\\sinx+cosx=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=2\left(vn\right)\\\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=1\end{matrix}\right.\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{1}{\sqrt{2}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{4}=\dfrac{\pi}{4}+k2\pi\\x+\dfrac{\pi}{4}=\pi-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)

5 tháng 9 2021

2.

\(\left|cosx-sinx\right|+2sin2x=1\)

\(\Leftrightarrow\left|cosx-sinx\right|-1+2sin2x=0\)

\(\Leftrightarrow\left|cosx-sinx\right|-\left(cosx-sinx\right)^2=0\)

\(\Leftrightarrow\left|cosx-sinx\right|\left(1-\left|cosx-sinx\right|\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)=0\\\left|cosx-sinx\right|=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{4}=k\pi\\cos^2x+sin^2x-2sinx.cosx=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\1-sin2x=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\sin2x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)

3 tháng 8 2019

cos2x = 1- sin^x 
sin2x= 2sinxcosx 

Nhóm lại bình thường và giải thôi