K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2017

Chọn D

13 tháng 12 2018

Đáp án D

22 tháng 12 2023

a: Thay x=1 và y=-1 vào (d), ta được:

\(\left(m-2\right)\cdot1+m+1=-1\)

=>m-2+m+1=-1

=>2m-1=-1

=>2m=0

=>m=0

b: Thay y=0 vào y=x+2, ta được:

x+2=0

=>x=-2

Thay x=-2 và y=0 vào y=(m-2)x+m+1, ta được:

-2(m-2)+m+1=0

=>-2m+4+m+1=0

=>5-m=0

=>m=5

AH
Akai Haruma
Giáo viên
20 tháng 4 2021

Lời giải:

1.PT hoành độ giao điểm:

$x^2-mx-4=0(*)$ 

Khi $m=3$ thì pt trở thành: $x^2-3x-4=0$

$\Leftrightarrow (x+1)(x-4)=0$

$\Rightarrow x=-1$ hoặc $x=4$

Với $x=-1$ thì $y=(-1)^2=1$. Giao điểm thứ nhất là $(-1;1)$

Với $x=4$ thì $y=4^2=16$. Giao điểm thứ hai là $(4;16)$

2.

$\Delta (*)=m^2+16>0$ với mọi $m\in\mathbb{R}$ nên PT $(*)$ luôn có 2 nghiệm phân biệt $x_1,x_2$, đồng nghĩa với việc 2 ĐTHS luôn cắt nhau tại 2 điểm phân biệt $A(x_1,y_1); B(x_2,y_2)$

Áp dụng định lý Viet:

$x_1+x_2=m$ và $x_1x_2=-4$

Khi đó:

$y_1^2+y_2^2=49$

$\Leftrightarrow (mx_1+4)^2+(mx_2+4)^2=49$

$\Leftrightarrow m^2(x_1^2+x_2^2)+8m(x_1+x_2)=17$

$\Leftrightarrow m^2[(x_1+x_2)^2-2x_1x_2]+8m(x_1+x_2)=17$

$\Leftrightarrow m^2(m^2+8)+8m^2=17$

$\Leftrightarrow m^4+16m^2-17=0$

$\Leftrightarrow (m^2-1)(m^2+17)=0$

$\Rightarrow m^2=1$

$\Leftrightarrow m=\pm 1$

3 tháng 8 2023

\(a,M\left(1;4\right)\in y=\left(m-1\right)x+3\)

\(\Rightarrow4=\left(m-1\right).1+3\Rightarrow m=2\)

\(b,\) Với \(m=2\Rightarrow y=\left(2-1\right)x+3\Rightarrow y=x+3\)

3 tháng 8 2023

Huhu, sao mất tiêu dòng đầu rồi.

b: Thay x=2 và y=0 vào (d), ta được:

2m-4+5=0

hay m=-1/2

 

27 tháng 4 2023

- Phương trình hoành độ giao điểm của (P) và (d'):

\(-x^2=mx-4\Leftrightarrow x^2+mx-4=0\left(1\right)\)

\(a=1;b=m;c=-4\)

\(\Delta=b^2-4ac=m^2-4.\left(1\right).\left(-4\right)=m^2+16>0\)

Vì \(\Delta>0\) nên (P) và (d) luôn cắt nhau tại hai điểm phân biệt có hoành độ x1, x2.

Theo định lí Viete cho phương trình (1) ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-\dfrac{m}{1}=-m\\x_1x_2=\dfrac{c}{a}=\dfrac{-4}{1}=-4\end{matrix}\right.\)
Ta có: \(\left(x_1-x_2\right)^2-\left(x_1+x_2\right)=18\)

\(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=18\)

\(\Rightarrow\left(-m\right)^2-2.\left(-4\right)-\left(-m\right)-18=0\)

\(\Leftrightarrow m^2+m-12=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=4\\m=-3\end{matrix}\right.\)

Vậy m=4 hay m=-3.

x^2+(y-1)^2=4

=>R=2 và I(0;1)

A(1;1-m) thuộc (C)

y'=4x^3-4mx

=>y'(1)=4-4m

PT Δsẽ là y=(4-m)(x-1)+1-m

Δ luôn đi qua F(3/4;0) và điểm F nằm trong (λ)

Giả sử (Δ) cắt (λ) tại M,N

\(MN=2\sqrt{R^2-d^2\left(I;\Delta\right)}=2\sqrt{4-d^2\left(I;\Delta\right)}\)

MN min khi d(I;(Δ)) max

=>d(I;(Δ))=IF 

=>Δ vuông góc IF

Khi đó, Δ có 1 vecto chỉ phương là: vecto u vuông góc với vecto IF=(3/4;p-1)

=>vecto u=(1;4-4m)

=>1*3/4-(4-4m)=0

=>m=13/16

loading...  loading...