Tìm GTNN của \(y=x-2\sqrt{x-2014}\)
2> Cho x,y >0 thỏa mãn x+y=6,tìm GTLN của \(x^2y\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Điều kiện: x>=2009.
Ta có: \(y=x-2\sqrt{x-2009}=\left(x-2009\right)-2\sqrt{x-2009}+1+2008.\)
=> \(y=\left(\sqrt{x-2009}-1\right)^2+2008\)
Do \(\left(\sqrt{x-2009}-1\right)^2\ge0\) => \(y=\left(\sqrt{x-2009}-1\right)^2+2008\ge2008\)(Với mọi x>=2009)
GTNN của y là: y=2008
Đạt được khi \(\left(\sqrt{x-2009}-1\right)^2=0\) <=> x-2009=1 <=> x=2010
2/ Ta có: x+y=6 => y=6-x. Đặt A=x2y
=> A=x2y=x2(6-x)=6x2-x3 = x(6x-x2)=x(9-9+6x-x2)=x[9-(x2-6x+9)] =x[9-(x-3)2]
Do x>0 và (x-3)2 >=0 => A đạt giá trị lớn nhất khi (x-3)2=0 <=> x=3
=> GTLN của A=x2y là 3.9=27 Đạt được khi x=y=3
bài này dễ ẹt ak
nhưng giúp mình bài này đi
chotam giac abc . co canh bc=12cm, duong cao ah=8cm
a> tinh s tam giac abc
b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách )
c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame
Câu 2-Ta có x^2+y^2=5
(x+y)^2-2xy=5
Đặt x+y=S. xy=P
S^2-2P=5
P=(S^2-5)/2
Ta lại có P=x^3+y^3=(x+y)^3-3xy(x+y)=S^3-3SP=S^3-3S(S^2-5)/2
Rùi tự tính
Câu1
Ta có P<=a+a/4+b+a/12+b/3+4c/3 (theo bdt cô sy)
=> P<=4/3(a+b+c)=4/3
Vậy Max p =4/3 khi a=4b=16c
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
khó quá bạn ơi ! Mới lại mình chưa học đến .
1)Đặt \(\sqrt{x-2014}=t\left(t\ge0;x\ge2014\right)\Rightarrow x=t^2+2014\)
Ta có y = \(t^2+2014-2t=\left(t-1\right)^2+2013\ge2013\)
Vậy miny = 2013 khi t = 1 <=> x = 2015
2) CM BĐT : \(abc\le\frac{\left(a+b+c\right)^3}{27}\). ( với a ; b ;c >0 ) (1)
Áp dụng bđt cô si với ba số không âm ta có :
\(a+b+c\ge3\sqrt[3]{abc}\Leftrightarrow\left(a+b+c\right)^3\ge27abc\Leftrightarrow abc\le\frac{\left(a+b+c\right)^3}{27}\)
Dấu '' = '' xảy ra khi a = b= c . BĐT đc chứng minh
Áp dụng BĐT (1) ta có :
\(x^2y=4\cdot\frac{1}{2}x\cdot\frac{1}{2}x\cdot y\le4\cdot\frac{\left(\frac{1}{2}x+\frac{1}{2}x+y\right)^3}{27}=4\cdot\frac{6^3}{27}=32\)
VẬy GTLN của x^2y là 32 khi \(\frac{1}{2}x=y\) và x + y = 6 <=> x = 4 và y = 2