Trong mặt phẳng tọa độ Oxy cho hai điểm A( 1; -1) và B(3; 2).Tìm M thuộc trục tung sao cho M A 2 + M B 2 nhỏ nhất.
A. M(0; 1)
B. M (0; -1)
C. M 0 ; 1 2 .
D. M 0 ; - 1 2 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(1); vecto u=2*vecto a-vecto b
=>\(\left\{{}\begin{matrix}x=2\cdot1-0=2\\y=2\cdot\left(-4\right)-2=-10\end{matrix}\right.\)
(2): vecto u=-2*vecto a+vecto b
=>\(\left\{{}\begin{matrix}x=-2\cdot\left(-7\right)+4=18\\y=-2\cdot3+1=-5\end{matrix}\right.\)
(3): vecto a=2*vecto u-5*vecto v
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\cdot\left(-5\right)-5\cdot0=-10\\b=2\cdot4-5\cdot\left(-3\right)=15+8=23\end{matrix}\right.\)
(4): vecto OM=(x;y)
2 vecto OA-5 vecto OB=(-18;37)
=>x=-18; y=37
=>x+y=19
\(\overrightarrow{AB}=\left(x_B-x_A;y_B-y_A\right)=\left(3;-9\right)\)
Ta có C ∈ O x nên C(x, 0) và A C → = x − 1 ; − 3 B C → = x − 4 ; − 2 .
Do C A = C B ⇔ C A 2 = C B 2 .
⇔ x − 1 2 + − 3 2 = x − 4 2 + − 2 2 ⇔ x 2 − 2 x + 1 + 9 = x 2 − 8 x + 16 + 4 ⇔ 6 x = 10 ⇔ x = 5 3 ⇒ C 5 3 ; 0
Chọn B.
Gọi C(x, y).
Ta có B A → = 1 ; 3 B C → = x − 1 ; y − 1 .
Tam giác ABC vuông cân tại B:
⇔ B A → . B C → = 0 B A = B C ⇔ 1. x − 1 + 3. y − 1 = 0 1 2 + 3 2 = x − 1 2 + y − 1 2
⇔ x = 4 − 3 y 10 y 2 − 20 y = 0 ⇔ y = 0 x = 4 hay y = 2 x = − 2 .
Chọn C.
Vì C thuộc trục tung nên C(0;y)
\(\overrightarrow{AB}=\left(-4;-1\right)\)
\(\overrightarrow{AC}=\left(-1;y-2\right)\)
Theo đề, ta có: 4-(y-2)=0
=>y-2=4
hay y=6
Vì C thuộc trục tung nên C(0;y)
AB=(−4;−1)AB→=(−4;−1)
AC=(−1;y−2)AC→=(−1;y−2)
Theo đề, ta có: 4-(y-2)=0
=>y-2=4hay y=6
Ta có M ∈ O y nên M(0; m) và M A → = 1 ; − 1 − m M B → = 3 ; 2 − m .
Khi đó M A 2 + M B 2 = M A → 2 + M B → 2 = 1 2 + − 1 − m 2 + 3 2 + 2 − m 2 = 2 m 2 − 2 m + 15.
= 2 m − 1 2 2 + 29 2 ≥ 29 2 ; ∀ m ∈ ℝ .
Suy ra M A 2 + M B 2 min = 29 2 .
Dấu = xảy ra khi và chỉ khi m = 1 2 ⇒ M 0 ; 1 2 .
Chọn C.