K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2017

Gọi C(x, y).

Ta có  B A → = 1 ; 3 B C → = x − 1 ; y − 1 .

Tam giác ABC vuông cân tại B:

⇔ B A → . B C → = 0 B A = B C ⇔ 1. x − 1 + 3. y − 1 = 0 1 2 + 3 2 = x − 1 2 + y − 1 2

⇔ x = 4 − 3 y 10 y 2 − 20 y = 0 ⇔ y = 0 x = 4 hay y = 2 x = − 2 .

 

 Chọn C.

15 tháng 2 2019

19 tháng 8 2018

Ta có C ∈ O x nên C(c; 0) và  C A → = − 2 − c ; 4 C B → = 8 − c ; 4 .

Tam giác ABC vuông tại C nên  C A → . C B → = 0 ⇔ − 2 − c . 8 − c + 4.4 = 0

⇔ c 2 − 6 c = 0 ⇔ c = 6 → C 6 ; 0 c = 0 → C 0 ; 0 .  

Chọn B.

26 tháng 12 2018

Ta có C ∈ O x nên C(c, 0) và  C A → = − 2 − c ; 4 C B → = 8 − c ; 4 .

Tam giác ABC vuông tại C nên  C A → . C B → = 0 ⇔ − 2 − c . 8 − c + 4.4 = 0

⇔ c 2 − 6 c = 0 ⇔ c = 6 → C 6 ; 0 c = 0 → C 0 ; 0 .  

Chọn B.

NV
29 tháng 1 2021

1.

\(\overrightarrow{AB}=\left(2;-6\right)\Rightarrow AB=2\sqrt{10}\) \(\Rightarrow BC=AB.cosB=\sqrt{10}\)

Gọi \(C\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AC}=\left(x-1;y-2\right)\\\overrightarrow{BC}=\left(x-3;y+4\right)\end{matrix}\right.\)

Tam giác ABC vuông tại C và có \(BC=\sqrt{10}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\overrightarrow{AC}.\overrightarrow{BC}=0\\BC^2=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-3\right)+\left(y-2\right)\left(y+4\right)=0\\\left(x-3\right)^2+\left(y+4\right)^2=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-4x+2y-5=0\\x^2+y^2-6x+8y+15=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3y-10=0\\x^2+y^2-6x+8y+15=0\end{matrix}\right.\)

\(\Rightarrow\left(3y+10\right)^2+y^2-6\left(3y+10\right)+8y+15=0\)

\(\Leftrightarrow2y^2+10y+11=0\)

\(\Leftrightarrow y=...\)

NV
29 tháng 1 2021

2.

Kẻ \(EF\perp BC\)

\(S_{ABC}=9S_{BDE}\Rightarrow AD.BC=9EF.BD\Rightarrow\dfrac{EF}{AD}=\dfrac{BC}{9BD}\)

Talet: \(\dfrac{EF}{AD}=\dfrac{BF}{BD}=\dfrac{BC}{9BD}\Rightarrow BC=9BF\)

Hệ thức lượng: \(BE^2=BF.BC=9BF^2\Rightarrow BE=3BF\)

\(\Rightarrow cosB=\dfrac{BF}{BE}=\dfrac{1}{3}\)

Gọi R là bán kính đường tròn ngoại tiếp ABC và \(r\) là bán kính đường tròn ngoại tiếp BDE

\(sinB=\sqrt{1-\left(\dfrac{1}{3}\right)^2}=\dfrac{2\sqrt{2}}{3}\)

\(\Rightarrow r=\dfrac{DE}{2sinB}=\dfrac{3}{2}\) (định lý sin tam giác BDE)

Dễ dàng chứng minh 2 tam giác ABC và BDE đồng dạng (chung góc B và \(\widehat{A}=\widehat{BDE}\) vì cùng bù \(\widehat{CDE}\))

Mà \(S_{ABC}=9S_{BDE}\Rightarrow\) 2 tam giác đồng dạng tỉ số \(k=\sqrt{9}=3\)

\(\Rightarrow R=3r=\dfrac{9}{2}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a)

Ta có: \(\overrightarrow {AB}  = \left( {2 - 1;4 - 3} \right) = \left( {1;1} \right),\;\overrightarrow {AC}  = \left( { - 3 - 1;2 - 3} \right) = \left( { - 4; - 1} \right)\)

Hai vectơ này không cùng phương (vì \(\frac{1}{{ - 4}} \ne \frac{1}{{ - 1}}\)).

Do đó các điểm A, B, C không cùng nằm trên một đường thẳng.

Vậy A, B, C là ba đỉnh của một tam giác.

b) Trung điểm M của đoạn thẳng AB có tọa độ là \(\left( {\frac{{1 + 2}}{2};\frac{{3 + 4}}{2}} \right) = \left( {\frac{3}{2};\frac{7}{2}} \right)\)

c) Trọng tâm G của tam giác ABC có tọa độ là \(\left( {\frac{{1 + 2 + \left( { - 3} \right)}}{3};\frac{{3 + 4 + 2}}{3}} \right) = \left( {0;3} \right)\)

d) Để O(0; 0) là trọng tâm của tam giác ABD thì \(\left( {0;0} \right) = \left( {\frac{{{x_A} + {x_B} + {x_D}}}{3};\frac{{{y_A} + {y_B} + {y_D}}}{3}} \right)\)

\( \Leftrightarrow \left( {0;0} \right) = \left( {\frac{{1 + 2 + x}}{3};\frac{{3 + 4 + y}}{3}} \right)\)

\(\begin{array}{l} \Leftrightarrow \left( {0;0} \right) = \left( {1 + 2 + x;3 + 4 + y} \right)\\ \Leftrightarrow \left( {0;0} \right) = \left( {x + 3;y + 7} \right)\\ \Leftrightarrow \left\{ \begin{array}{l}0 = x + 3\\0 = y + 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - 3\\y =  - 7\end{array} \right.\end{array}\)

Vậy tọa độ điểm D là (-3; -7).

8 tháng 3 2022

Giả sử \(C\)  cần tìm có tọa độ là \(\left(x;y\right)\). Để tam giác ABC vuông cân tại B ta phải có:

\(\left\{{}\begin{matrix}\overrightarrow{BA}.\overrightarrow{BC}=0\\\left|\overrightarrow{BA}\right|=\left|\overrightarrow{BC}\right|\end{matrix}\right.\)  với \(\overrightarrow{BA}=\left(1;3\right)\)  và \(\overrightarrow{BC}=\left(x-1;y-1\right)\)

Điều đó có nghĩa là:

\(\left\{{}\begin{matrix}1.\left(x-1\right)+3\left(y-1\right)=0\\1^2+3^2=\left(x-1\right)^2+\left(y-1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4-3y\\\left(3-3y\right)^2+\left(y-1\right)^2=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4-3y\\10y^2-20y=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2\\y=2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}C\left(4;0\right)\\C\left(-2;2\right)\end{matrix}\right.\)

ai giúp mình câu b với 

29 tháng 12 2021

a: \(AB=\sqrt{\left[2-\left(-2\right)\right]^2+\left(-1-2\right)^2}=5\)

\(BC=\sqrt{\left(5-2\right)^2+\left(3+1\right)^2}=5\)

Do đó: AB=BC

hay ΔABC cân tại B

giúp mình với

 

29 tháng 12 2021

a: \(AB=\sqrt{\left(2+2\right)^2+\left(-1-2\right)^2}=5\)

\(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

Do đó: ΔABC cân tại B