cho các số tự nhiên m,n và p là số nguyên tố và
p/m-1=m+n/p chứng minh rằng p2=n+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
m và n là số tự nhiên => m , n ≥ 0
p là số nguyên tố
Thỏa mãn \(\frac{p}{m-1}=\frac{m+n}{p}\) <=> p2 = ( m – 1 ).( m + n )
Do ( m – 1 ) và ( m + n ) là các ước nguyên dương của p2
Chú ý : m – 1< m + n (1)
Do p là số nguyên tố nên p2 chỉ có các ước nguyên dương là 1, p và p2 (2)
Từ (1) và (2) ta có m – 1 = 1 và m + n = p2. Khi đó m = 2 và tất nhiên 2 + n = p2
Vậy p2 = n + 2 (Đpcm).
m và n là số tự nhiên => m , n ≥ 0
p là số nguyên tố
Thỏa mãn p/m−1 =m+n/p <=> p2 = ( m – 1 )( m + n )
Do ( m – 1 ) và ( m + n ) là các ước nguyên dương của p2
Chú ý : m – 1< m + n ( 1 )
Do p là số nguyên tố nên p2 chỉ có các ước nguyên dương là 1, p và p2 ( 2 )
Từ ( 1 ) và ( 2 ) ta có m – 1 = 1 và m + n = p2.
Khi đó m = 2 và tất nhiên 2 + n = p2
Do đó A = p2 - n = 2
gọi d là UC(m; m.n+4) nên
\(m⋮d\Rightarrow m.n⋮d\)
\(m.n+4⋮d\)
\(\Rightarrow m.n+4-m.n=4⋮d\Rightarrow d=\left\{1;2;4\right\}\)
Do m lẻ => d lẻ => d=1 => m và m.n+4 nguyên tố cùng nhau
Câu hỏi của Nguyễn Phương Thảo - Toán lớp 7 - Học toán với OnlineMath
=> \(n+2=p^2\) là số chính phương.
ta có p^2=(m+n)(m-1)
vì m+n>m-1
>0
m
+n=p^2
m-1=1
suy ra m=2=>n+2=p^2 là số chính phuopwng