K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng BĐT Cauchy ta có:

\(a^4+a^4+b^4+c^4\ge4\sqrt[4]{a^4.a^4.b^4.c^4}=4a^2bc\)

Tương tự ta cũng có:

\(b^4+b^4+c^4+d^4\ge4\sqrt[4]{b^4.b^4.c^4.d^4}=4b^2cd\)

\(c^4+c^4+d^4+a^4\ge4\sqrt[4]{c^4.c^4.d^4.a^4}=4c^2da\)

\(d^4+d^4+a^4+b^4\ge4\sqrt[4]{d^4.d^4.a^4.b^4}=4d^2ab\)

Cộng theo vế các BĐT trên, ta được:

\(4\left(a^4+b^4+c^4+d^4\right)\ge4\left(a^2bc+b^2cd+c^2da+d^2ab\right)\)

\(\Leftrightarrow a^4+b^4+c^4+d^4\ge a^2bc+b^2cd+c^2da+d^2ab\left(đpcm\right)\)

Dấu "=" xảy ra.....

Thường là đề trên cho thêm dữ kiện a,b,c,d\(\ge0\), hoặc bạn có thể dùng dấu GTTĐ( Cũng làm như trên , nhưng áp dụngthêm \(\left\{{}\begin{matrix}\left|a\right|\ge a\\\left|b\right|\ge b\end{matrix}\right.\))

 

26 tháng 7 2021

Đây nhé! Tích giúp c nhaundefined

26 tháng 7 2021

batngo

27 tháng 3 2022

tra gút gồ đe=))

27 tháng 3 2022

lười

16 tháng 4 2017

Ta có: a2 + b2 = c2 + d2 

=> a2 - c2 = d2 - b2

=> (a - c)(a + c) = (d - b)(d + b)

Mà a + b = c + d

=> a - c = d - b

+) Nếu a = c

=> a - c = d - b = 0

=> d = b

=> a2014 = c2014 và d2014 = b2014 

=> a2014 + b2014 = c2014 + d2014              (1)

+) Nếu a \(\ne\) c

=> a - c = d - b  (khác 0)

=> d \(\ne\)

Có (a - c)(a + c) = (d - b)(d + b)

=> a + c = d + c                     (2)

Mà a + b = c + d                     (3)

Lấy (2) + (3) ta được:

2a + b + c = 2d + b + c

=> 2a = 2d

=> a = d

=> c = b

=> a2014 = d2014 và c2014 = b2014

=> a2014 + b2014 = c2014 + d2014                 (4)

Kết hợp (1) và (4) ta được: a2014 + b2014 = c2014 + d2014 (ĐPCM)

13 tháng 12 2023

\(a,b,c>0;abc=1000\)

\(P=\sum\dfrac{a}{b^4+c^4+1000a}\le\sum\dfrac{a}{bc\left(b^2+c^2\right)+a^2bc}=\sum\dfrac{a^2}{abc\left(a^2+b^2+c^2\right)}=\dfrac{\left(a^2+b^2+c^2\right)}{1000\left(a^2+b^2+c^2\right)}=\dfrac{1}{1000}\)

P đạt GTLN là 1/1000 khi \(a=b=c=10\)

2 tháng 7 2021

\(b)\)

\(4n-3⋮3n-2\)

\(\Leftrightarrow3\left(4n-3\right)⋮3n-2\)

\(\Leftrightarrow12n-9⋮3n-2\)

\(\Leftrightarrow\left(12n-8\right)-1⋮3n-2\)

\(\Leftrightarrow4\left(3n-2\right)-1⋮3n-2\)

\(\Leftrightarrow1⋮3n-2\)

\(\Leftrightarrow3n-2\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow3n\in\left\{1;3\right\}\)

Mà: \(3n⋮3\)

\(\Leftrightarrow3n=3\)

\(\Leftrightarrow n=1\)