K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2019

Đáp án C

Gọi u →  là véctơ chỉ phương của giao tuyến. Ta có

Điểm A(0;-1;1) là điểm thuộc cả (P) và (Q)

 

Vậy phương trình giao tuyến của hai mặt phẳng

15 tháng 7 2017

Chọn C

30 tháng 10 2017

18 tháng 12 2017

NV
14 tháng 4 2022

Phương trình \(d_1\) : \(\dfrac{x-1}{1}=\dfrac{y-2}{-1}=\dfrac{z-3}{-1}\) dạng tham số: \(\left\{{}\begin{matrix}x=1+t\\t=2-t\\z=3-t\end{matrix}\right.\)

Gọi A là giao điểm d1 và (P), tọa độ A thỏa mãn:

\(3-t-1=0\Rightarrow t=2\Rightarrow A\left(3;0;1\right)\)

\(\overrightarrow{n_P}=\left(0;0;1\right)\) ; \(\overrightarrow{n_Q}=\left(1;1;1\right)\)

\(\overrightarrow{u_{\Delta}}=\left[\overrightarrow{n_P};\overrightarrow{n_Q}\right]=\left(-1;1;0\right)\)

\(\left[\overrightarrow{u_{\Delta}};\overrightarrow{n_P}\right]=\left(1;1;0\right)\)

Phương trình d: \(\left\{{}\begin{matrix}x=3+t\\y=t\\z=1\end{matrix}\right.\)

27 tháng 2 2017

22 tháng 4 2019

10 tháng 3 2019

Chọn A.

Ta có P(1;1;1) đều thuộc 2 mặt phẳng đã cho.

25 tháng 4 2017

Đáp án C

Dễ thấy điểm P(1; 1; 1) thuộc cả hai mặt phẳng nên nó thuộc đường thẳng giao tuyến của hai mặt phẳng này.

16 tháng 8 2017

Đáp án D

Phương pháp giải:

Ứng dụng tích có hướng để tìm vectơ chỉ phương của đường thẳng giao tuyến và giải hệ phương trình để tìm tọa độ giao điểm của hai mặt phẳng

Lời giải: Ta có

Gọi d là giao tuyến của (P)(Q).

Ta có 

Xét hệ

Vậy phương trình đường thẳng cần tìm là