K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2019

Đáp án B

Đặt t = log u 1 , khi đó giả thiết ⇔ t 3 - 2 t 2 + t - 2 = 0 ⇔ t - 2 t 2 + 1 = 0 ⇔ t = 2 ⇒ log u 1 = 2  

Ta có u n + 1 = 2 u n + 10 ⇔ u n + 1 + 10 = 2 u n + 10 ⇔ v n + 1 = 2 v n  với v n = u n + 10  

Dễ thấy v n + 1 = 2 v n  là một cấp số nhân với công bội q = 2 ⇒ v n = v 1 . 2 n - 1  

Mà log u 1 = 2 ⇒ u 1 = 10 2 = 100  suy ra v 1 = u 1 + 10 = 110 ⇒ v n = 100 . 2 n - 1  

Khi đó u n = v n - 10 = 100 . 2 n - 1 - 10 > 10 100 - 10 ⇔ 2 n - 1 > 10 98 ⇔ n > log 2 10 98 + 1 = 326 , 54  

Vậy giá trị nhỏ nhất của n cần tìm là n m i n = 327 .

26 tháng 3 2019

13 tháng 9 2017

Đáp án B.

Đặt  t = 2 + log   u 1 - 2 log   u 10 ≥ 0

⇔ 2 log   u 1 - 2 log   u 10 = t 2 - 2 , 

khi đó giả thiết trở thành:

log   u 1 - 2 log   u 10 + 2 + log   u 1 - 2 log   u 10 = 0

⇔ t 2 + t - 2 = 0  

<=> t = 1 hoặc t = -2

⇒ log   u 1 - 2 log   u 10 = - 1

⇔ log   u 1 + 1 = 2 log   u 10

⇔ log 10 u 1 = log u 10 2 ⇔ 10 u 1 = u 10 2   ( 1 )

Mà un+1 = 2un => un là cấp số nhân với công bội q = 2

=> u10 = 29 u1 (2)

Từ (1), (2) suy ra

10 u 1 = 9 9 u 1 2 ⇔ 2 18 u 1 2 = 10 u 1 ⇔ u 1 = 10 2 18

⇒ u n = 2 n - 1 . 10 2 18 = 2 n . 10 2 19 .

Do đó  u n > 5 100 ⇔ 2 n . 10 2 19 > 5 100

⇔ n > log 2 5 100 . 2 19 10 = - log 2 10 + 100 log 2 5 + 19 ≈ 247 , 87

Vậy giá trị n nhỏ nhất thỏa mãn là n = 248.

23 tháng 3 2019

Chọn A.

Dễ thấy un là cấp số nhân với q = 10

Ta có: u8 = 107u1; u10 = 109u1

Do đó PT 

Giải PT ta được logu1 = -17 u1 = 10-17 u2018 = 102017 u1 = 102000 

NV
14 tháng 12 2018

\(log\left(5\left(x^2+1\right)\right)\ge log\left(mx^2+4x+m\right)\)

- BPT đúng \(\forall x\Rightarrow log\left(mx^2+4x+m\right)\) xác định \(\forall x\in R\)

\(\Rightarrow mx^2+4x+m>0\) \(\forall x\in R\)

\(\Rightarrow\left\{{}\begin{matrix}a=m>0\\\Delta'=4-m^2< 0\end{matrix}\right.\) \(\Rightarrow m>2\) (1)

- Lại có \(x^2+1\ge1\) \(\forall x\)

\(\Rightarrow5\left(x^2+1\right)\ge mx^2+4x+m\)

\(\Leftrightarrow5\left(x^2+1\right)-4x\ge m\left(x^2+1\right)\)

\(\Leftrightarrow5-\dfrac{4x}{x^2+1}\ge m\)

Đặt \(f\left(x\right)=5-\dfrac{4x}{x^2+1}\Rightarrow f\left(x\right)\ge m\) \(\forall x\Leftrightarrow m\le min\left(f\left(x\right)\right)\)

Ta có \(f\left(x\right)=3+2-\dfrac{4x}{x^2+1}=3+\dfrac{2\left(x-1\right)^2}{x^2+1}\ge3\)

\(\Rightarrow min\left(f\left(x\right)\right)=3\Rightarrow m\le3\) (2)

Kết hợp (1), (2) \(\Rightarrow2< m\le3\Rightarrow m=3\)

Vậy có 1 giá trị nguyên duy nhất của m để BPT đúng với mọi x

Đáp án B

10 tháng 5 2017

1) X=log1-log2+log2-log3+...+log99-log100

=log1-log100

=0-2

=-2

Đáp án C

2)X=-log3100=-log3102=-2log3(2.5)=-2log32-2log35=-2a-2b

Đáp án A

5 tháng 5 2018

Đk: x > -1/3

<=> 3x+1 < x+7

<=> x < 3

kết hợp đk --> -1/3 < x < 3

--> nghiệm nguyên của x = { 0; 1 ; 2 }

NV
13 tháng 4 2020

ĐKXĐ: \(x>0\)

\(\Leftrightarrow log_2^2\left(2x\right)+log_2\left(2x\right)-log_28-9< 0\)

\(\Leftrightarrow log_2^2\left(2x\right)+log_2\left(2x\right)-12< 0\)

\(\Leftrightarrow\left(log_2\left(2x\right)+4\right)\left(log_2\left(2x\right)-3\right)< 0\)

\(\Leftrightarrow-4< log_2\left(2x\right)< 3\)

\(\Leftrightarrow\frac{1}{16}< 2x< 8\Leftrightarrow\frac{1}{32}< x< 4\)

15 tháng 3 2018

Chọn đáp án B.