Tính:
a) ( x + 5 ) 2 b) 5 2 − t 2 ;
c) ( 2 u + 3 v ) 2 ; d) − 1 8 a + 2 3 bc 2 ;
e) mn 4 − x 6 mn 4 + x 6 ; f) ( 2 a – b + c ) 2 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a) \(\left(x+5\right)^2=x^2+10x+25\)
b) \(\left(\dfrac{5}{2}-t\right)^2=\dfrac{25}{4}-5t+t^2\)
c) \(\left(2u+3v\right)^2=4u^2+12uv+9v^2\)
d) \(\left(-\dfrac{1}{8}a+\dfrac{2}{3}bc\right)^2=\dfrac{1}{64}a^2-\dfrac{1}{6}abc+\dfrac{4}{9}b^2c^2\)
e) \(\left(\dfrac{x}{y}-\dfrac{1}{z}\right)^2=\dfrac{x^2}{y^2}-\dfrac{2x}{yz}+\dfrac{1}{z^2}\)
f) \(\left(\dfrac{mn}{4}-\dfrac{x}{6}\right)\left(\dfrac{mn}{4}+\dfrac{x}{6}\right)=\dfrac{m^2n^2}{16}-\dfrac{x^2}{36}\)
Bài 1:
$M=(2a+b)^2-(b-2a)^2=[(2a+b)-(b-2a)][(2a+b)+(b-2a)]$
$=4a.2b=8ab$
$N=(3a+1)^2+2a(1-2b)+(2b-1)^2$
$=(9a^2+6a+1)+2a-4ab+(4b^2-4b+1)$
$=9a^2+8a+4b^2-4b-4ab+2$
$A=(m-n)^2+4mn=m^2-2mn+n^2+4mn$
$=m^2+2mn+n^2=(m+n)^2$
a) \(3{x^5}.5{x^8} = 3.5.{x^5}.{x^8} = 15.{x^{5 + 8}} = 15.{x^{13}}\).
b) \( - 2{x^{m + 2}}.4{x^{n - 2}} = - 2.4.{x^{m + 2}}.{x^{n - 2}} = - 8.{x^{m + 2 + n - 2}} = - 8.{x^{m + n}}\) (m, n \(\in\) N; n > 2).
Bài 2:
a.
$(6x+1)^2+(6x-1)^2-2(6x+1)(6x-1)$
$=[(6x+1)-(6x-1)]^2=2^2=4$
b.
$3(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)$
$=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)$
$=(2^4-1)(2^4+1)(2^8+1)(2^{16}+1)$
$=(2^8-1)(2^8+1)(2^{16}+1)$
$=(2^{16}-1)(2^{16}+1)=2^{32}-1$
c.
$2C=(5^2-1)(5^2+1)(5^4+1)(5^8+1)(5^{16}+1)$
$=(5^4-1)(5^4+1)(5^8+1)(5^{16}+1)$
$=(5^8-1)(5^8+1)(5^{16}+1)$
$=(5^{16}-1)(5^{16}+1)=5^{32}-1$
$\Rightarrow C=\frac{5^{32}-1}{2}$
a: \(\dfrac{1}{2}x^2y\left(2x^3-\dfrac{2}{5}xy^2-1\right)\)
\(=x^5y-\dfrac{1}{5}x^3y^3-x^2y\)
b: \(\left(\dfrac{1}{2}x-5\right)\left(x^2-2x+3\right)\)
\(=\dfrac{1}{2}x^3-x^2+\dfrac{3}{2}x-5x^2+10x-15\)
\(=\dfrac{1}{3}x^3-6x^2+\dfrac{23}{2}x-15\)
a) \(3\left(2x-3\right)+5\left(x+2\right)=6x-9+5x+10=11x+1\)
b) \(3x\left(2x-8\right)+\left(6x+2\right)\left(5-x\right)=6x^2-24x+30x-6x^2+10-2x=4x+10\)
c) \(\left(x-3\right)\left(x+3\right)-\left(x-5\right)^2=x^2-9-x^2+10x-25=10x-34\)
d) \(\left(x-y\right)^3-\left(x-y\right)\left(x^2+xy+y^2\right)=x^3-3x^2y+3xy^2-y^3-x^3+y^3=3xy^2-3x^2y\)
a) \(2xy\left(3x^2-5xy+4y^2\right)=6x^3y-10x^2y^2+8xy^3\)
b) \(\left(x-3\right)^2+\left(x+5\right)\left(5-x\right)=x^2-6x+9+25-x^2=34-6x\)
a: \(2xy\left(3x^2-5xy+4y^2\right)=6x^3y-10x^2y^2+8xy^3\)
b: \(\left(x-3\right)^2+\left(x+5\right)\left(5-x\right)\)
\(=x^2-6x+9+25-x^2\)
=-6x+34
a)
Vậy \(({x^3} + 1):({x^2} - x + 1) = x + 1\).
b)
Vậy \((8{x^3} - 6{x^2} + 5) = ({x^2} - x + 1)(8x + 2) + ( - 6x + 3)\)