Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \({x^5}:{x^3} = {x^{5 - 3}} = {x^2}\);
b) \((4{x^3}):{x^2} = (4:1).({x^3}:{x^2}) = 4x\);
c) \((a{x^m}):(b{x^n}) = (a:b).({x^m}:{x^n}) = (a:b).{x^{m - n}}\)(a ≠ 0; b ≠ 0; m, n \(\in\) N, m ≥ n).
a) \((3{x^6}):(0,5{x^4}) = (3:0,5).({x^6}:{x^4}) = 6.{x^{6 - 4}} = 6{x^2}\);
b) \(( - 12{x^{m + 2}}):(4{x^{n + 2}}) = ( - 12:4).({x^{m + 2}}:{x^{n + 2}}) = - 3.{x^{m + 2 - n - 2}} = - 3.{x^{m - n}}\)(m, n \(\in\) N, m ≥ n).
a) \({x^2}.{x^4} = {x^{2 + 4}} = {x^6}\).
b) \(3{x^2}.{x^3} = 3.1.{x^{2 + 3}} = 3{x^5}\).
c) \(a{x^m}.b{x^n} = a.b.{x^{m + n}}\) (a ≠ 0; b ≠ 0; m, n \(\in\) N).
a/Ta có: M(x)+N(x) = (2x5 - 4x3 + 2x2 + 10x - 1) + (-2x5 + 2x4 + 4x3 + x2 + x - 10)
= 2x5 - 2x5 - 4x3 + 4x3 + 2x4 + 2x2 + x2 + 10x + x -1 - 10
= 2x4 + 3x2 + 11x - 11
b/ Ta có: A(x) = N(x)-M(x) = (-2x5 + 2x4 + 4x3 + x2 + x - 10) - (2x5 - 4x3 + 2x2 + 10x - 1)
= -2x5 - 2x5 + 2x4 + 4x3 + 4x3 + x2 - 2x2 + x - 10x -10 + 1
= -2x5 + 2x4 + 8x3 - x2 - 9x -9
B(3)=2*3^2-4*3+3=18-12+3=9
B(-1/2)=2*1/4-4*(-1/2)+3=1/2+3+2=1/2+5=11/2
Theo đề bài ta có \(M(x) = 2{x^4} - 5{x^3} + 7{x^2} + 3x\)
\(\begin{array}{l}M(x) + Q(x) = 6{x^5} - {x^4} + 3{x^2} - 2\\ \Rightarrow Q(x) = (6{x^5} - {x^4} + 3{x^2} - 2) - (2{x^4} - 5{x^3} + 7{x^2} + 3x)\\ \Rightarrow Q(x) = 6{x^5} - {x^4} + 3{x^2} - 2 - 2{x^4} + 5{x^3} - 7{x^2} - 3x\\Q(x) = 6{x^5} - 3{x^4} + 5{x^3} - 4{x^2} - 3x - 2\end{array}\)
Theo đề bài ta có :
\(\begin{array}{l}N(x) - M(x) = - 4{x^4} - 2{x^3} + 6{x^2} + 7\\ \Rightarrow N(x) = - 4{x^4} - 2{x^3} + 6{x^2} + 7 + 2{x^4} - 5{x^3} + 7{x^2} + 3x\\ \Rightarrow N(x) = - 2{x^4} - 7{x^3} + 13{x^2} + 3x + 7\end{array}\)
a/ Đặt: \(\frac{x}{5}=\frac{y}{4}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=5k\\y=4k\end{matrix}\right.\)
Ta có: \(x^2-y^2=1\)
\(\Rightarrow\left(5k\right)^2-\left(4k\right)^2=1\)
\(\Rightarrow25k^2-16k^2=1\)
\(\Rightarrow k^2\left(25-16\right)=1\)
\(\Rightarrow k^29=1\)
\(\Rightarrow k^2=\frac{1}{9}\)
\(\Rightarrow k=\pm\sqrt{\frac{1}{9}}=\pm\frac{1}{3}\)
*Với: \(k=\frac{1}{3}\)
\(\left\{{}\begin{matrix}x=5k\\y=4k\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=5.\frac{1}{3}=\frac{5}{3}\\y=4.\frac{1}{3}=\frac{4}{3}\end{matrix}\right.\)
*Với: \(k=-\frac{1}{3}\)
\(\left\{{}\begin{matrix}x=5k\\y=4k\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=5.\left(-\frac{1}{3}\right)=-\frac{5}{3}\\y=4\left(-\frac{1}{3}\right)=-\frac{4}{3}\end{matrix}\right.\)
Vậy:..................
b/ \(\frac{x}{y}=\frac{2}{3}\Rightarrow\frac{x}{2}=\frac{y}{3}\)
Đặt: \(\frac{x}{2}=\frac{y}{3}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\end{matrix}\right.\)
Ta có: \(x^2+y^2=208\)
\(\Rightarrow\left(2k\right)^2+\left(3k\right)^2=208\)
\(\Rightarrow4k^2+9k^2=208\)
\(\Rightarrow k^2\left(4+9\right)=208\)
\(\Rightarrow k^213=208\)
\(\Rightarrow k^2=208:13=16\)
\(\Rightarrow k=\pm4\)
*Với k = 4
\(\left\{{}\begin{matrix}x=2k\\y=3k\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2.4=8\\y=3.4=12\end{matrix}\right.\)
*Với k = -4
\(\left\{{}\begin{matrix}x=2k\\y=3k\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2.\left(-4\right)=-8\\y=3.\left(-4\right)=-12\end{matrix}\right.\)
Vậy...................
a) Ta có: \(\frac{x}{5}=\frac{y}{4}\)
\(\Leftrightarrow\frac{x^2}{25}=\frac{y^2}{16}\)
Ta có: \(x^2-y^2=1\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{x^2}{25}=\frac{y^2}{16}=\frac{x^2-y^2}{25-16}=\frac{1}{9}\)
Do đó:
\(\left\{{}\begin{matrix}\frac{x^2}{25}=\frac{1}{9}\\\frac{y^2}{16}=\frac{1}{9}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2=\frac{25}{9}\\y^2=\frac{16}{9}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{\frac{5}{3};-\frac{5}{3}\right\}\\y\in\left\{\frac{4}{3};-\frac{4}{3}\right\}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{5}{3};-\frac{5}{3}\right\}\) và \(y\in\left\{\frac{4}{3};-\frac{4}{3}\right\}\)
b) Ta có: \(\frac{x}{y}=\frac{2}{3}\)
\(\Leftrightarrow\frac{x}{2}=\frac{y}{3}\)
\(\Leftrightarrow\frac{x^2}{4}=\frac{y^2}{9}\)
Ta có: \(x^2+y^2=208\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{x^2+y^2}{4+9}=\frac{208}{13}=16\)
Do đó:
\(\left\{{}\begin{matrix}\frac{x^2}{4}=16\\\frac{y^2}{9}=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2=64\\y^2=144\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{8;-8\right\}\\y\in\left\{12;-12\right\}\end{matrix}\right.\)
Vậy: \(x\in\left\{8;-8\right\}\) và \(y\in\left\{12;-12\right\}\)
a) \(3{x^5}.5{x^8} = 3.5.{x^5}.{x^8} = 15.{x^{5 + 8}} = 15.{x^{13}}\).
b) \( - 2{x^{m + 2}}.4{x^{n - 2}} = - 2.4.{x^{m + 2}}.{x^{n - 2}} = - 8.{x^{m + 2 + n - 2}} = - 8.{x^{m + n}}\) (m, n \(\in\) N; n > 2).