Cho tam giác ABC có a = 3 , b = 4, c = 2 3 . Giá trị của cos B là:
A. 1 12
B. - 1 12
C. - 1 6
D. 1 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC có a = 3 , b = 4, c = 2 3 . Giá trị của cos B là:
A. 1 12
B. - 1 12
C. - 1 6
D. 1 6
Chọn B.
Ta có: góc A tù nên cos A < 0 ; sinA > 0 ; tan A < 0 ; cot A < 0
Do góc A tù nên góc B và C là các góc nhọn có các giá trị lượng giác đều dương
Do đó: M > 0 ; N > 0 ; P > 0 và Q < 0.
\(\cos\alpha=\sqrt{1-\sin^2\alpha}=\sqrt{1-\left(\dfrac{\sqrt{3}-1}{4}\right)^2}=\dfrac{\sqrt{12+2\sqrt{3}}}{4}\)
\(\Rightarrow2\cos\alpha=\dfrac{\sqrt{12+2\sqrt{3}}}{2}\). Chọn B.
CÂU 1:
a) \(2x+4+x^2=-2x+x-3x+2x\)
\(\Leftrightarrow2x+4+x^2=-2x\)
\(\Leftrightarrow x^2+4x+4=0\)
\(\Leftrightarrow\left(x+2\right)^2=0\)
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
b) \(2x^2-5x-x=x^2+6x\)
\(\Leftrightarrow2x^2-5x-x-x^2-6x=0\)
\(\Leftrightarrow3x^2-12x=0\)
\(\Leftrightarrow3x\left(x-4\right)=0\)
Hoặc \(3x=0\Leftrightarrow x=0\)
Hoặc \(x-4=0\Leftrightarrow x=4\)
\(\sin^2\alpha+\cos^2\alpha=1\Leftrightarrow\sin^2\alpha=1-\dfrac{1}{16}=\dfrac{15}{16}\\ \Leftrightarrow\sin\alpha=\dfrac{\sqrt{15}}{4}\\ \cot\alpha=\dfrac{\cos\alpha}{\sin\alpha}=\dfrac{1}{4}\cdot\dfrac{4}{\sqrt{15}}=\dfrac{1}{\sqrt{15}}=\dfrac{\sqrt{15}}{15}\)
Áp dụng hệ quả định lí cosin trong tam giác ta có:
cos B = 3 2 + 2 3 2 − 4 2 2. 3 .2 3 = − 1 12
Chọn B