Giải Phương Trình:
\(\frac{6}{x^2+2}+\frac{12}{x^2+8}=3-\frac{7}{x^2+8}\)
mấy bạn giúp jum mink vs ai giải đúng và rõ ràng mink sẽ tick hứa đấy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{6}{x^2+2}+\frac{12}{x^2+8}=3-\frac{7}{x^2+3}\)
\(\Leftrightarrow\frac{6}{x^2+2}-1+\frac{12}{x^2+8}-1=1-\frac{7}{x^2+3}\)
\(\Leftrightarrow\frac{6}{x^2+2}-\frac{x^2+2}{x^2+2}+\frac{12}{x^2+8}-\frac{x^2+8}{x^2+8}=\frac{x^2+3}{x^2+3}-\frac{7}{x^2+3}\)
\(\Leftrightarrow\frac{-x^2+4}{x^2+2}+\frac{-x^2+4}{x^2+8}=\frac{x^2-4}{x^2+3}\)
\(\Leftrightarrow\frac{-x^2+4}{x^2+2}+\frac{-x^2+4}{x^2+8}+\frac{-x^2+4}{x^2+3}=0\)
\(\Leftrightarrow\left(-x^2+4\right)\left(\frac{1}{x^2+2}+\frac{1}{x^2+8}+\frac{1}{x^2+3}\right)=0\)
\(\Leftrightarrow-x^2+4=0\left(\text{vì : }\frac{1}{x^2+2}+\frac{1}{x^2+8}+\frac{1}{x^2+3}\ne0\right)\)
<=>(2-x)(2+x)=0
<=>x=2 hoặc x=-2
Vậy S={-2;2}
\(\frac{148-x}{25}+\frac{169-x}{23}+\frac{186-x}{21}+\frac{199-x}{19}=10\)
\(\Leftrightarrow\frac{148-x}{25}-1+\frac{169-x}{23}-2+\frac{186-x}{21}-3+\frac{199-x}{19}-4=0\)
\(\Leftrightarrow\frac{148-x}{25}-\frac{25}{25}+\frac{169-x}{23}-\frac{46}{23}+\frac{186-x}{21}-\frac{63}{21}+\frac{199-x}{19}-\frac{76}{19}=0\)
\(\Leftrightarrow\frac{123-x}{25}+\frac{123-x}{23}+\frac{123-x}{21}+\frac{123-x}{19}=0\)
\(\Leftrightarrow\left(123-x\right).\left(\frac{1}{25}+\frac{1}{23}+\frac{1}{21}+\frac{1}{19}\right)=0\)
\(\Leftrightarrow123-x=0\left(\text{vì }\frac{1}{25}+\frac{1}{23}+\frac{1}{21}+\frac{1}{19}\ne0\right)\)
<=>x=123
Vậy S={123}
\(\frac{x^2+2x+1}{x^2+2x+1}+\frac{x^2+2x+2}{x^2+2x+3}=\frac{7}{6}\)
\(\Leftrightarrow\frac{x^2+2x+2-1}{x^2+2x+2}+\frac{x^2+2x+3-1}{x^2+3x+3}=\frac{7}{6}\)
\(\Leftrightarrow1-\frac{1}{x^2+2x+2}+1-\frac{1}{x^2+2x+3}=\frac{7}{6}\)
Đặt \(y=x^2+2x+1\), ta được:
\(2-\left(\frac{1}{y+1}+\frac{1}{y+2}\right)=\frac{7}{6}\)
\(\Leftrightarrow\frac{1}{y+1}+\frac{1}{y+2}=2-\frac{7}{6}=\frac{5}{6}\)
\(\Leftrightarrow\frac{1}{y+1}+\frac{1}{y+2}-\frac{5}{6}=0\)
\(\Leftrightarrow\frac{6\left(y+2\right)+6\left(y+1\right)-5\left(y+1\right)\left(y+2\right)}{6\left(y+1\right)\left(y+2\right)}=0\)
\(\Leftrightarrow6y+12+6y+6-\left(5y+5\right)\left(y+2\right)=0\)
\(\Leftrightarrow6y+12+6y+6-5y^2-10y-5y-10=0\)
\(\Leftrightarrow-5y^2-3y+8=0\)
\(\Leftrightarrow-5y^2+5y-8y+8=0\)
\(\Leftrightarrow-5y\left(y-1\right)-8\left(y-1\right)=0\)
\(\Leftrightarrow-\left(y-1\right)\left(5y+8\right)=0\)
Th1 \(y-1=0\Leftrightarrow y=1\)
\(\Leftrightarrow x^2+2x+1=1\)
\(\Leftrightarrow\left(x+1\right)^2=1\Leftrightarrow x+1=1;x=1=-1\)
\(\Leftrightarrow x=0\) hoặc \(x=-2\)
Th2 \(5y+8=0\Leftrightarrow5y=-8\Leftrightarrow y=\frac{-8}{5}\)
\(\Leftrightarrow x^2+2x+1=\frac{-8}{5}\)
\(\Leftrightarrow\left(x+1\right)^2=-\frac{8}{5}\)
Vì \(\left(x+1\right)^2\ge0\) mà \(\left(x+1\right)^2=\frac{-8}{5}\) ( vô lý) nên k có giá trị của x
Vậy \(S=\left\{0;-2\right\}\)
Giải Phương trình sau:
( x2 - 2x +4 )( x2 +3x + 4 ) = 14x2
ai trả lời đúng và rõ ràng mink sẽ tick cho
( x2 - 2x +4 )( x2 +3x + 4 ) = 14x2
Đặt t=x2-2x+4 ta được:
t.(t+5x)=14x2
<=>t2+5tx=14x2
<=>t2+5tx-14x2=0
<=>t2-2tx+7tx-14x2=0
<=>t.(t-2x)+7x.(t-2x)=0
<=>(t-2x)(t+7x)=0
<=>t-2x=0 hoặc t+7x=0
<=>x2-2x+4-2x=0 hoặc x2-2x+4+7x=0
<=>x2-4x+4=0 hoặc x2+5x+4=0
<=>(x-2)2=0 hoặc x2+4x+x+4=0
<=>x-2=0 hoặc x.(x+4)+(x+4)=0
<=>x=2 hoặc (x+4)(x+1)=0
<=>x=2 hoặc x=-4 hoặc x=-1
Em kiểm tra lại đề bài nhé \(\frac{2}{x-y}\)hay \(\frac{2}{x-2}\)