chứng minh A=(7100-3100)*(210+211+212) chia hết cho 70
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3+3^2+3^3+3^4+.......+3^{100}\)
\(\Rightarrow A=\left(3+3^2+3^3+3^4\right)+.......+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(\Rightarrow A=3.\left(1+3+3^2+3^3\right)+........+3^{97}.\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=3.40+.........+3^{97}.40\)
\(\Rightarrow A=40.\left(3+.......+3^{97}\right)\)
\(\Rightarrow A⋮40\)( 1 )
Vì \(A\)là tổng của các bậc lũy thừa của 3 nên \(A⋮3\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra : \(A⋮40.3\)
\(\Rightarrow A⋮120\)
Vậy \(A⋮120\)( ĐPCM )
Lời giải:
$A=\frac{2^{10}+2-1}{2^9+1}=\frac{2(2^9+1)-1}{2^9+1}=2-\frac{1}{2^9+1}$
$B=\frac{2^{12}+1}{2^{11}+1}=\frac{2(2^{11}+1)-1}{2^{11}+1}=2-\frac{1}{2^{11}+1}$
Vì $2^9+1< 2^{11}+1\Rightarrow \frac{1}{2^9+1}> \frac{1}{2^{11}+1}$
$\Rightarrow 2-\frac{1}{2^9+1}< 2-\frac{1}{2^{11}+1}$
$\Rightarrow A< B$
1/
Tổng A là tổng các số hạng cách đều nhau 4 đơn vị.
Số số hạng: $(101-1):4+1=26$
$A=(101+1)\times 26:2=1326$
2/
$B=(1+2+2^2)+(2^3+2^4+2^5)+(2^6+2^7+2^8)+(2^9+2^{10}+2^{11})$
$=(1+2+2^2)+2^3(1+2+2^2)+2^6(1+2+2^2)+2^9(1+2+2^2)$
$=(1+2+2^2)(1+2^3+2^6+2^9)$
$=7(1+2^3+2^6+2^9)\vdots 7$
A=2+22+23+...+299+2100A=2+22+23+...+299+2100
⇒2A=22+23+24+...+2100+2101⇒2A=22+23+24+...+2100+2101
⇒A=2101−2⇒A=2101−2
B=3+32+33+...+399+3100B=3+32+33+...+399+3100
⇒3B=32+33+34+...+3100+3101⇒3B=32+33+34+...+3100+3101
⇒2B=3101−3⇒2B=3101−3
⇒B=3101−32
Ta thấy : \(\left\{{}\begin{matrix}3^{100}=\left(3^4\right)^{25}\\9^{990}=\left(3^2\right)^{990}=3^{1980}=\left(3^4\right)^{495}\end{matrix}\right.\)
Thấy 34 có chữ số tận cùng là 1 .
=> (34)25 và ( 34)495 có chữ số tận cùng là 1 .
=> \(\left(3^4\right)^{25}+\left(3^4\right)^{495}\) sẽ có chữ số tận cùng là 2 .
\(\Rightarrow\left(3^4\right)^{25}+\left(3^4\right)^{495}⋮2\)
=> ĐPCM
Ta có \(3\equiv1\left(mod2\right)\) \(\Rightarrow3^{100}\equiv1^{100}\equiv1\left(mod2\right)\)
9\(\equiv1\left(mod2\right)\) \(\Rightarrow9^{100}\equiv1^{100}\equiv1\left(mod2\right)\)
\(\Rightarrow3^{100}+9^{100}\equiv1+1\equiv2\equiv0\left(mod2\right)\)
\(\Rightarrow3^{100}+9^{100}⋮2\) Vậy...
Lời giải:
$B=3+(32+33+...+3100)$
$=3+\frac{(3100+32).3069}{2}=3+4806054=4806057$ không chia hết cho $160$
Bạn xem lại đề.
A=(7100-3100)*(210+211+212)
A=[(74)25-(34)25]*(210+210.2+210.22)
A=(240125-8125)*210(1+2+22)
A=(.........1-.......1)*210.7
A=..........0*210.7
Vì A chia hết cho 10 và 7 nên A chia hết cho 70