K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2018

Đáp án B

ĐK: n ∈ ℕ *  

Khi đó  1 C n 1 - 1 C n + 1 2 = 7 6 C n + 4 1 ⇔ 1 n - 1 n + 1 ! 2 ! n + 1 ! = 7 6 n + 4 ⇔ 1 n - 2 n n + 1 = 7 6 n + 4

⇔ 6 n + 1 n + 4 - 12 n + 4 = 7 n n + 1 ⇔ n 2 - 11 n + 24 - 0 ⇔ [ n = 8 n = 3  . Vậy  n 1 + n 2 = 11 .

27 tháng 2 2017

Để 4n - 1 chai hết cho 7

Thì 4n - 1 thuộc B(7) = {0;7;14;21;28;35;42;................}

Suy ra 4n = {1;8;15;22;29;36;43;50;57;......................}

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0
26 tháng 10 2023

Vì số tự nhiên cần tìm có đúng 4 ước là

1; a; b; n và n + 1 = 4.( a + b)

Nên n là ước lớn nhất vì vậy n là chính số cần tìm

Vì số ước số của n là 4 và a; b là 2 ước của n nên n = a.b ( a; b \(\in\) P)

Theo bài ra ta có: a.b  + 1 = 4.(a + b) ⇒  a.b + 1 = 4.a + 4.b

⇒ a.b - 4a = 4b - 1 ⇒ a.(b - 4) = 4b - 1 ⇒ a = \(\dfrac{4b-1}{b-4}\) ⇒ a = 4 + \(\dfrac{15}{b-4}\)

Vì a \(\in\) P nên b - 4  \(\in\) Ư(15)

Lập bảng ta có: 

b - 4 -15 -5 -3 -1 1 3 5 15
b -11 (loại)

-1(loại) 

1 3 5 7 9 loại 19
a = 4 + \(\dfrac{15}{b-4}\)     -1 loại -11 loại 19 9 loại   5

Theo bảng trên ta có a = 5; b = 19 \(\Rightarrow\) n = 5.19 = 95

Vậy các số tự nhiên thỏa mãn đề bài là 95.

 Ghi chú thử lại ta có: 95 = 5.19

Ư(95) = 1; 5; 19; 95 (đúng 4 ước ok)

95 + 1 = 96 = 4.( 5 + 19) (ok)

 

 

 

                         

                   

 

25 tháng 6 2021

`2(n-1)-5(n-2)>0`

`<=>2n-2-5n+10>0`

`<=>8-3n>0`

`<=>3n<8`

`<=>n<8/3`

Mà `n in NN`

`=>n in {0,1,2}`

25 tháng 6 2021

\(2\left(n-1\right)-5\left(n-2\right)>0\)

<=> 2n -2 - 5n + 10 > 0

<=> -3n + 8 > 0

<=> -3n > - 8

<=> \(n< \dfrac{8}{3}\)

Mà n là số tự nhiên

<=> n \(\in\left\{0;1;2\right\}\)

11 tháng 11 2021

\(\Leftrightarrow10n+14⋮2n+1\)

\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3;9;-9\right\}\)

\(\Leftrightarrow2n\in\left\{0;-2;2;-4;8;-10\right\}\)

hay \(n\in\left\{0;-1;1;-2;4;-5\right\}\)

11 tháng 11 2021

Cho mình cách làm lớp 6

 

11 tháng 11 2021

a: \(\Leftrightarrow2n+1\in\left\{1;3;9\right\}\)

hay \(n\in\left\{0;1;4\right\}\)

11 tháng 11 2021

\(a,\Leftrightarrow10n+14⋮2n+1\\ \Leftrightarrow5\left(2n+1\right)+9⋮2n+1\\ \Leftrightarrow2n+1\inƯ\left(9\right)=\left\{1;3;9\right\}\\ \Leftrightarrow n\in\left\{0;1;4\right\}\)

6 tháng 11 2021

\(\Rightarrow3\left(n+1\right)+11⋮n+1\\ \Rightarrow11⋮n+1\\ \Rightarrow n+1\inƯ\left(11\right)=\left\{1;11\right\}\\ \Rightarrow n\in\left\{0;10\right\}\)