K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 9

Lời giải:

Nếu cả 3 số nguyên tố trên đều lẻ. Khi đó: $p^q+q^p$ là tổng 2 số lẻ, nên kết quả là một số chẵn (vô lý vì $r$ cũng lẻ)

$\Rightarrow$ trong 3 số trên có ít nhất 1 số chẵn.

Vì $r=p^q+q^p>2$ với mọi $p,q\in\mathbb{P}$ nên số lẻ chỉ có thể là $p$ hoặc $q$.

Không mất tổng quát, giả sử $p=2$. Khi đó:

$2^q+q^2=r$

Nếu $q=3$ thì $r=2^3+3^2=17$ (thỏa mãn) 

Nếu $q>3$ thì $(q,3)=1$

$\Rightarrow q^2\equiv 1\pmod 3$ (do 1 scp khi chia 3 dư 0 hoặc 1, mà $q\not\vdots 3$ nên $q^2$ chia 3 dư 1)

$2^q\equiv (-1)^q\equiv -1\equiv 2\pmod 3$ (do $q$ lẻ)

$\Rightarrow r=2^q+q^2\equiv 2+1\equiv 3\equiv 0\pmod 3$

$\Rightarrow r\vdots 3\Rightarrow r=3$

$2^q+q^2=3$ (vô lý do với số nguyên tố $q>3$ thì $2^q+q^2> 2^3+3^2>3$)

Vậy $(p,q,r)=(2,3,17), (3,2,17)$