K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2021

\(a,\Rightarrow\left|x\right|=4+1,16=5,16\Rightarrow\left[{}\begin{matrix}x=5,16\\x=-5,16\end{matrix}\right.\\ b,\Rightarrow\left(3x-2\right)^3=\left(-\dfrac{5}{2}\right)^3\\ \Rightarrow3x-2=-\dfrac{5}{2}\\ \Rightarrow3x=-\dfrac{5}{2}+2=-\dfrac{1}{2}\\ \Rightarrow x=-\dfrac{1}{2}:3=-\dfrac{1}{6}\)

11 tháng 11 2021

a)lxl - 1,16=4

lxl=4+1,16

lxl=5,16

=>x thuộc ( 5,16 ; -5,16)

5: =>4x^2-1/9=0

=>(2x-1/3)(2x+1/3)=0

=>x=1/6 hoặc x=-1/6

6: =>x-1=2

=>x=3

7:=>(2x-1)^3=-27

=>2x-1=-3

=>2x=-2

=>x=-1

8: =>1/8(x-1)^3=-125

=>(x-1)^3=-1000

=>x-1=-10

=>x=-9

3: =>(5x-5)^2-4=0

=>(5x-7)(5x-3)=0

=>x=3/5 hoặc x=7/5

4: =>(5x-1)^2=0

=>5x-1=0

=>x=1/5

1: =>(3x-1)(2x-1)=0

=>x=1/3 hoặc x=1/2

2: =>x^2(2x-3)-4(2x-3)=0

=>(2x-3)(x^2-4)=0

=>(2x-3)(x-2)(x+2)=0

=>x=3/2;x=2;x=-2

14 tháng 7 2023

`@` `\text {Answer}`

`\downarrow`

`1,`

\(2x\left(3x-1\right)+1-3x=0\)

`<=> 2x(3x - 1) - 3x + 1 = 0`

`<=> 2x(3x - 1) - (3x - 1) = 0`

`<=> (2x - 1)(3x-1) = 0`

`<=>`\(\left[{}\begin{matrix}2x-1=0\\3x-1=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}2x=1\\3x=1\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy,  `S = {1/2; 1/3}`

`2,`

\(x^2\left(2x-3\right)+12-8x=0\)

`<=> x^2(2x - 3) - 8x + 12 =0`

`<=> x^2(2x - 3) - (8x - 12) = 0`

`<=> x^2(2x - 3) - 4(2x - 3) = 0`

`<=> (x^2 - 4)(2x - 3) = 0`

`<=>`\(\left[{}\begin{matrix}x^2-4=0\\2x-3=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x^2=4\\2x=3\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x^2=\left(\pm2\right)^2\\x=\dfrac{3}{2}\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=\pm2\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy, `S = {+-2; 3/2}`

`3,`

\(25\left(x-1\right)^2-4=0\)

`<=> 25(x-1)(x-1) - 4 = 0`

`<=> 25(x^2 - 2x + 1) - 4 = 0`

`<=> 25x^2 - 50x + 25 - 4 = 0`

`<=> 25x^2 - 15x - 35x + 21 = 0`

`<=> (25x^2 - 15x) - (35x - 21) = 0`

`<=> 5x(5x - 3) - 7(5x - 3) = 0`

`<=> (5x - 7)(5x - 3) = 0`

`<=>`\(\left[{}\begin{matrix}5x-7=0\\5x-3=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}5x=7\\5x=3\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=\dfrac{7}{5}\\x=\dfrac{3}{5}\end{matrix}\right.\)

Vậy, `S = {7/5; 3/5}`

`4,`

\(25x^2-10x+1=0\)

`<=> 25x^2 - 5x - 5x + 1 = 0`

`<=> (25x^2 - 5x) - (5x - 1) = 0`

`<=> 5x(5x - 1) - (5x - 1) = 0`

`<=> (5x - 1)(5x-1)=0`

`<=> (5x-1)^2 = 0`

`<=> 5x - 1 = 0`

`<=> 5x = 1`

`<=> x = 1/5`

Vậy,` S = {1/5}.`

Bài 2: 

\(=\dfrac{28}{25}\cdot\dfrac{15}{7}\cdot5=\dfrac{75}{25}\cdot4=12\)

Bài 1: 

a: \(x+\dfrac{7}{8}=\dfrac{13}{2}:4=\dfrac{13}{8}\)

nên x=13/8-7/8=6/8=3/4

b: \(x:\dfrac{5}{3}=\dfrac{6}{5}-\dfrac{2}{3}=\dfrac{18-10}{15}=\dfrac{8}{15}\)

nên \(x=\dfrac{8}{15}\cdot\dfrac{5}{3}=\dfrac{8}{9}\)

a: =>A-B=3x^2y-4xy^2+x^2y-2xy^2=4x^2y-6xy^2

b: =>B-A=-7xy^2+8x^2y-5xy^2+6x^2y=-12xy^2+14x^2y

=>A-B=12xy^2-14x^2y

c: =>B-A=8x^2y^3-4x^3y-3x^2y^3+5x^3y^2=5x^2y^3+x^3y^2

=>A-B=-5x^2y^3-x^3y^2

d: =>A-B=2x^2y^3-7x^3y+6x^2y^3+3x^3y^2=8x^2y^3-7x^3y+3x^3y^2

3 tháng 2 2023

1) Áp dụng bđt Cauchy cho 3 số dương ta có

 \(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)

\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)

\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)

Cộng (1);(2);(3) theo vế ta được

\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)

\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)

\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)

 

3 tháng 2 2023

2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)

Dấu"=" khi a = 4b

nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)

Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)

Đặt \(\sqrt{a+b}=t>0\) ta được

\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)

\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)

Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)

nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)

khi đó a + b = 1

mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

 

1 tháng 11 2023

a) \(\dfrac{2}{3}x-\dfrac{1}{2}x=\left(-\dfrac{7}{12}\right)\cdot1\dfrac{2}{5}\)

\(\Rightarrow\dfrac{1}{6}x=\left(-\dfrac{7}{12}\right)\cdot\dfrac{7}{5}\)

\(\Rightarrow\dfrac{1}{6}x=-\dfrac{49}{60}\)

\(\Rightarrow x=-\dfrac{49}{60}:\dfrac{1}{6}\)

\(\Rightarrow x=-\dfrac{49}{10}\) 

b) \(\left(\dfrac{1}{5}-\dfrac{3}{2}x\right)^2=\dfrac{9}{4}\)

\(\Rightarrow\left(\dfrac{1}{5}-\dfrac{3}{2}x\right)^2=\left(\pm\dfrac{3}{2}\right)^2\)

+) \(\dfrac{1}{5}-\dfrac{3}{2}x=\dfrac{3}{2}\)

\(\Rightarrow\dfrac{3}{2}x=\dfrac{1}{5}-\dfrac{3}{2}\)

\(\Rightarrow\dfrac{3}{2}x=-\dfrac{13}{10}\)

\(\Rightarrow x=-\dfrac{13}{10}:\dfrac{3}{2}\)

\(\Rightarrow x=-\dfrac{13}{15}\)

+) \(\left(1,25-\dfrac{4}{5}x\right)^3=-125\)

\(\Rightarrow\left(\dfrac{5}{4}-\dfrac{4}{5}x\right)^3=\left(-5\right)^3\)

\(\Rightarrow\dfrac{5}{4}-\dfrac{4}{5}x=-5\)

\(\Rightarrow\dfrac{4}{5}x=\dfrac{5}{4}+5\)

\(\Rightarrow\dfrac{4}{5}x=\dfrac{25}{4}\)

\(\Rightarrow x=\dfrac{25}{4}:\dfrac{4}{5}\)

\(\Rightarrow x=\dfrac{125}{16}\)

1 tháng 11 2023

a, \(\dfrac{2}{3}\)\(x\) - \(\dfrac{1}{2}\)\(x\) = (- \(\dfrac{7}{12}\)). 1\(\dfrac{2}{5}\)

    \(x\).(\(\dfrac{2}{3}\) - \(\dfrac{1}{2}\)) = (- \(\dfrac{7}{12}\)) . \(\dfrac{7}{5}\)

    \(x\)\(\dfrac{1}{6}\) = - \(\dfrac{49}{60}\)

    \(x\)      = - \(\dfrac{49}{60}\).6

    \(x\)      = -\(\dfrac{49}{10}\)

28 tháng 6 2017

Phép chia các phân thức đại số

a: =>2x-1=-2

=>2x=-1

hay x=-1/2

b: \(\Leftrightarrow\left[{}\begin{matrix}3x+2=0\\-\dfrac{2}{5}x-7=0\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{2}{3};-\dfrac{35}{2}\right\}\)

c: x/8=9/4

nên x/8=18/8

hay x=18

d: \(\Leftrightarrow\left(x-3\right)^2=36\)

=>x-3=6 hoặc x-3=-6

=>x=9 hoặc x=-3

e: =>-1,7x=6,12

hay x=-3,6

h: =>x-3,4=27,6

hay x=31

22 tháng 2 2022

a) \(\dfrac{1}{3}\div\left(2x-1\right)=\dfrac{-1}{6}\)

\(\left(2x-1\right).\dfrac{1}{3}\div\left(2x-1\right)=\left(2x-1\right)\left(-\dfrac{1}{6}\right)\)

\(\dfrac{1}{3}=\left(2x-1\right)\left(-\dfrac{1}{6}\right)\)

\(\dfrac{1}{3}=-1\left(2x-1\right)\div6\)

\(\dfrac{1}{3}=-2x+1\div6\)

\(x=-\dfrac{1}{2}\)

b) \(\left(3x+2\right)\left(\dfrac{-2}{5}x-7\right)=0\)

\(TH1:3x+2=0\)

\(3x=0-2\)

\(3x=-2\)

\(x=\dfrac{-2}{3}\)

\(TH2:\left(-\dfrac{2}{5}x-7\right)=0\)

\(\left(\dfrac{-2}{5}x-7\right)=0\)

\(\left(\dfrac{-2x}{5}+\dfrac{5\left(-7\right)}{5}\right)=0\)

\(\left(\dfrac{-2x-35}{5}\right)=0\)

\(-2x-35=0\)

\(-2x=0+35\)

\(x=-\dfrac{35}{2}\)

c) \(\dfrac{x}{8}=\dfrac{9}{4}\)

\(\Leftrightarrow x=\dfrac{9.8}{4}=\dfrac{72}{4}=18\)

\(x=18\)

d) \(\dfrac{x-3}{2}=\dfrac{18}{x-3}\)

\(x-3=18+2\)

\(x=20-3\)

\(x=17\)

e) \(4,5x-6,2x=6,12\)

\(\dfrac{9x}{2}-6,2.x=6,12\)

\(\dfrac{9x}{2}+\dfrac{-31x}{5}=6,12\)

\(\dfrac{5.9x}{10}+\dfrac{2\left(-31\right)x}{10}=6.12\)

\(\dfrac{45x-62x}{10}=6.12\)

\(=-17x\div10=6.12\)

\(-17x=10.6.12\)

\(x=-3,6\)

h) \(11,4-\left(x-3,4\right)=-16,2\)

\(x-3,4=-16,2+11,4\)

\(x-3,4=-4,8\)

\(x=-1,4\)

 

24 tháng 7 2023

a) \(\left(2x+1\right)^3=125\)

\(\left(2x+1\right)^3=5^3\)

\(2x+1=5\)

\(2x=4\)

\(x=2\)

b) \(3^x+25=26\times2^2+2\times3^0\)

\(3^x+25=26\times4+2\times1\)

\(3^x+25=106\)

\(3^x=106-25\)

\(3^x=81\)

\(3^x=3^4\)

\(x=4\)

24 tháng 7 2023

(2x+1)3 = 125 

a)<=> (2x+1)3 = 53

<=> 2x+1 = 5

<=> 2x = 4

<=> x = 2

3^x+25=26 . 2^2 + 2. 3^0

b)3^x+25=104 +2

3^x+25=106

3^x=106+25

3^x=81=3^4

=> x=4