Cho đa thức P(X)= ax^2+bx+c. Biết 5a-b+2c=0. Chứng minh rằng P(1).P(-2)<-0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(H\left(-1\right)=a-b+c\) (1)
\(H\left(-2\right)=4a-2b+c\) (2)
Lấy (1) + (2) vế theo vế được
\(H\left(-1\right)+H\left(-2\right)=5a-3b+2c=0\)
Suy ra \(H\left(-1\right)=H\left(-2\right)=0\Rightarrow H\left(-1\right).H\left(-2\right)=0\)
Hoặc \(H\left(-1\right)\)và\(H\left(-2\right)\)có 1 số âm và một số dương
\(\Rightarrow H\left(-1\right).H\left(-2\right)<0\)
Vậy \(H\left(-1\right).H\left(-2\right)\le0\)
Ta có:\(P\left(-2\right)=4a-2b+c\)
\(P\left(1\right)=a+b+c\)
Lấy:\(P\left(1\right)+P\left(-2\right)=5a-b+2c=0\)(theo đề bài)
Vì vậy:\(P\left(1\right)=-P\left(-2\right)\)(Hai số đối nhau tổng bằng 0 )
Do đó:\(P\left(-2\right).P\left(1\right)\le0\)( . là dấu nhân nha bn)
P(-1) = a.(-1)2 + b.(-1) + c = a - b + c
P(-2) = a.(-2)2 + b.(-2) + c = 4a - 2b + c
=> P(-1) + P(-2) = 5a - 3b + 2c = 0
=> P(-1) = - P(-2)
=> P(-1) . P(-2) = - P2 (-2) \(\le\) 0 Vì P2 (-2) \(\ge\) 0
=> ĐPCM
\(Q\left(2\right)=4a+2b+c\)
\(Q\left(-1\right)=a-b+c\)
\(Q\left(2\right)+Q\left(-1\right)=5a+b+2c=0\)
\(\Leftrightarrow Q\left(2\right)=-Q\left(-1\right)\)
\(Q\left(2\right).Q\left(-1\right)=-Q\left(-1\right)^2\le0\)
ta có P(2)= 4a +2b +c
P(-1)= a-b+c
ta cso P(2) + P(-1)= 4a +2b+c + a -b+c= 5a +b+2c
mà 5a+b+2c=0 => P(2) + P(-1)=0 => P(2)= -P(-1)
vậy p(2).P(-1)<=0
P(x =ax2+bx+c
P(2)=a.22+b.2+c=4a+2b+c (1)
P(-1)=a.(-1)2+b.(-1)+c=a-b+c (2)
Lấy (1)+(2),vế theo vế
=>P(2)+P(-1)=4a+2b+c+a-b+c=5a+2b+c=0
=>P(2)=-P(-1)
=>\(P\left(2\right).P\left(-1\right)=-P\left(-1\right).P\left(-1\right)=-\left[P\left(-1\right)\right]^2< =0\) (đpcm)
P(1)=a+b+c
P(-2)=4a-2b+c
P(1)+P(2)=5a-3b+2c=0 => P(1) và P(2) trái dấu hoặc P(1)=P(2)=0
=>p(1).P(2) bé hơn hoặc bằng không
Ta có: P(x)=ax2 + bx + c.
=> P(1)= a.12+b.1+c=a+b+c.
P(-2)=a.(-2)2+b.(-1)+c=4a-2b+c.
Ta lại có: P(1)+P(-2)= (a+b+c)+(4a-2b+c)=5a-b+2c=0.
=> P(1)= -P(-2).
=> P(1).P(-2)= -P(-2).P(-2)= - [ P(-2)]2 <_ 0.
Vậy: P(1).P(-2)<_ 0