Cho phương trình (ẩn x): 4 x 2 - 25 + k 2 + 4 k x = 0 . Giải phương trình với k = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Với k =0 thì biểu thức bằng:
4x3-25=0 hay 4x3 = 25 nên x=\(\sqrt[3]{\frac{25}{4}}\)
b,Với k =(-3) thì biểu thức bằng:\(4x^3-25+9-12x=0\)
hay :\(4x^3-12x=16\)
\(4x\left(x^2-3\right)=16\)
\(x^2-3=\frac{4}{x}\) nên suy ra \(\left(x^2-3\right):\frac{4}{x}=1\)
hay \(x^3-3x=4\)
nên nếu với x là một số tự nhiên thì phương trình vô nghiệm
k=0 => \(9x^2-25=0\)
\(\Leftrightarrow x^2=\frac{25}{9}\Leftrightarrow x=\pm\frac{5}{3}\)
x=-1 => 9-25-k2=2k=0
=> k2-2k+16=0
=> không có giá trị k thỏa mãn
a) k = 0 thì pt trở thành \(9x^2-25=0\Leftrightarrow x^2=\frac{25}{9}\)
\(\Leftrightarrow x=\pm\sqrt{\frac{5}{3}}\)
b) Thay x = -1 vào pt
\(9-25-k^2+2k=0\Leftrightarrow k^2-2k=-16\)
Ta có \(\Delta=2^2-4.16< 0\)
Vậy ko có k để x=-1 là nghiệm
Khi k = - 3 ta có phương trình: 4 x 2 – 25 + - 3 2 + 4(-3)x = 0
⇔ 4 x 2 – 25 + 9 – 12x = 0
⇔ 4 x 2 – 12x – 16 = 0
⇔ x 2 – 3x – 4 = 0
⇔ x 2 – 4x + x – 4 = 0
⇔ x(x – 4) + (x – 4) = 0
⇔ (x + 1)(x – 4) = 0
⇔ x + 1 = 0 hoặc x – 4 = 0
x + 1 = 0 ⇔ x = -1
x – 4 = 0 ⇔ x = 4
Vậy phương trình có nghiệm x = -1 hoặc x = 4.
a) Thay k = 0 vào ta có pt: 9x2 - 25 = 0 nên x = 5/3 hoặc x = -5/3
b) Để pt nhận x = -1 làm nghiệm thì: 9 - 25 - k2 + 2k = 0 tương đương - k2 + 2k - 16 =0
Mặt khác - k2 + 2k - 16 = - ( k2 - 2k + 16) = -[(k - 1)2 + 15] < 0
Suy ra không có giá trị nào của k thỏa mãn yêu cầu bài toán
a: Khi k=0 thì PT sẽ là:
9x^2-25=0
=>x=5/3 hoặc x=-5/3
b: Thay x=-1 vào pt, ta sẽ được:
-k^2+2k+9-25=0
=>-k^2+2k-16=0
=>\(k\in\varnothing\)
Khi k = 0 ta có phương trình: 4 x 2 - 25 = 0
⇔ (2x + 5)(2x – 5) = 0
⇔ 2x + 5 = 0 hoặc 2x – 5 = 0
2x + 5 = 0 ⇔ x = - 5/2
2x – 5 = 0 ⇔ x = 5/2
Vậy phương trình có nghiệm x = - 5/2 hoặc x = 5/2