Tìm số tự nhiên a biết:
a, 10 ⋮ 3a+1
b, a+6 ⋮ a+1
c, 3a+7 ⋮ 2a+3
d, 6a+11 ⋮ 2a+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2b: \(=8\sqrt{2}-3\sqrt{2}-3\sqrt{2}-10\sqrt{2}=-8\sqrt{2}\)
3:
a: \(=\left(\sqrt{6a}+\dfrac{\sqrt{6a}}{3}+\sqrt{6a}\right):\sqrt{6a}\)
=1+1/3+1
=7/3
b: \(=\dfrac{2}{3a-1}\cdot\sqrt{3}\cdot a\cdot\left|3a-1\right|\)
\(=\dfrac{2\sqrt{3}\cdot a\left(1-3a\right)}{3a-1}=-2a\sqrt{3}\)
a) \(Ư\left(7\right)=\left\{\pm1;\pm7\right\}\)
Để (a+2) là ước của 7:
<=> nếu: a+2= 1 => a= -1
Nếu: a+2=-1 => a=-3
Nếu: a+2= 7 => a= 5
Nếu: a+2=-7 => a=-9
Vậy để a+2 là ước của 7 thì a+2 thuộc tập hợp các số \(\left\{-9;-3;-1;5\right\}\)
b) \(Ư\left(-10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Để 2a là ước của -10:
<=> Nếu: 2a=1 => a= 1/2 (loại)
Nếu: 2a= -1 => a= -1/2 (loại)
Nếu: 2a=2 => a=1 (nhận)
Nếu: 2a= -2 => a= -1 (Nhận)
Nếu : 2a= 5 => a= 5/2 (loại)
Nếu: 2a=-5 => a= -5/2 (loại)
Nếu: 2a=10 => a=5 (nhận)
Nếu: 2a= -10 => a=-5 (nhận)
Vậy : Các số nguyên a thỏa mãn 2a là ước của -10 thuộc tập hợp các số: \(\left\{\pm1;\pm5\right\}\)
a, Ta có : \(a+2\inƯ_{\left(7\right)}\)
=> \(a+2\in\left\{1,-1,7,-7\right\}\)
=> \(a\in\left\{-1,-3,5,-9\right\}\)
Vậy \(a\in\left\{-1,-3,5,-9\right\}\) .
b, Ta có : \(2a\inƯ_{\left(10\right)}\)
=> \(2a\in\left\{1,-1,2,-2,5,-5,10,-10\right\}\)
=> \(a\in\left\{\frac{1}{2},-\frac{1}{2},1,-1,\frac{5}{2},-\frac{5}{2},5,-5\right\}\)
Mà a là số nguyên .
=> \(a\in\left\{1,-1,5,-5\right\}\)
Vậy \(a\in\left\{1,-1,5,-5\right\}\) .
c, Ta có : \(\frac{3a+6}{3a+1}\) = \(\frac{3a+1+5}{3a+1}=1+\frac{5}{3a+1}\)
=> \(3a+1\inƯ_{\left(5\right)}\)
=> \(3a+1\in\left\{1,-1,5,-5\right\}\)
=> \(3a\in\left\{0,-2,4,-6\right\}\)
=> \(a\in\left\{0,-\frac{2}{3},\frac{4}{3},-2\right\}\)
Mà a là số nguyên .
=> \(a\in\left\{0,-2\right\}\)
Vậy \(a\in\left\{0,-2\right\}\) .
d, Ta có : \(\frac{6a+1}{3a-1}=\frac{6a-2+3}{3a-1}=\frac{2\left(3a-1\right)+3}{3a-1}=2+\frac{3}{3a-1}\)
=> \(3a-1\inƯ_{\left(3\right)}\)
=> \(3a-1\in\left\{1,-1,3,-3\right\}\)
=> \(3a\in\left\{2,0,4,-2\right\}\)
=> \(a\in\left\{\frac{2}{3},0,\frac{4}{3},-\frac{2}{3}\right\}\)
Mà a là số nguyên .
=> \(a=0\)
Vậy a = 0 .
a, 10 ⋮ 3a+1 => 3a+1 ∈ Ư(10) => 3a+1 ∈ {1;2;5;10} => a ∈ { 0 ; 1 3 ; 4 3 ; 3 }. Vì a ∈ N, a ∈ {0;3}
b, a+6 ⋮ a+1 => a+1+5 ⋮ a+1 => 5 ⋮ a+1 => a+1 ∈ Ư(5) => a+1 ∈ {1;5} => a ∈ {0;4}
c, 3a+7 ⋮ 2a+3 => 2.(3a+7) - 3(2a+3) ⋮ 2a+3 => 5 ⋮ 2a+3 => 2a+3 ∈ Ư(5)
=> 2a+3 ∈ {1;5} => a = 1
d, 6a+11 ⋮ 2a+3 => 3.(2a+3)+2 ⋮ 2a+3 => 2 ⋮ 2a+3 => 2a+3 ∈ Ư(2)
=> 2a+3 ∈ {1;2} => a ∈ ∅
Còn câu d nữa bn ơi