K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2018

Chọn A

Gọi q là công bội của cấp số nhân (un)

Ta có: u1 = 3; u2 = 3q; u3 = 3q2

  ⇒ 15 u 1 − 4 u 2 + u 3 = 15.3 − 4.3 q +    3 q 2          = 45 − 12 q + 3 q 2 = 3 q − 2 2 + 33 ≥ 33       ∀ q .

Suy ra  15 u 1 − 4 u 2 + u 3  đạt GTNN khi q = 2 .

Khi đó  u 13 = u 1 q 12 = 12288.  

18 tháng 9 2019

Chọn B.

Gọi q là công bội của cấp số nhân (un)

Ta có 15u1 – 4u2 + u3 = 45 – 12q + 3q2 = 3(q – 2)2 + 33 33 q

min(15u1 – 4u2 + u3) = 33 khi q = 2

Suy ra u13 = u1q12 = 3.212 = 12288.

24 tháng 3 2017

30 tháng 12 2017

28 tháng 10 2018

Đáp án A

Chú ý khi giải:

Nhiều HS sẽ chọn nhầm đáp án D vì đọc không kĩ đề thành cấp số “cộng”.

Nhiều em khác lại chọn nhầm B vì quên mất trường hợp q = -3

9 tháng 6 2019

Phương pháp:

- Tính công bội q, từ đó suy ra  u 6

- Sử dụng công thức u n = u 1 q n - 1  

Cách giải:

Ta có: u 3 = u 1 q 2 ⇔ q = ± 3  

Vậy với q = 3  thì u 6 = u 1 . q 5 = 486  

Với  q = - 3  thì  u 6 = u 1 . q 5 = - 486

Chọn: A

8 tháng 9 2023

Để tìm U1 và q, ta sử dụng hệ phương trình sau:

U1 + U6 = 165U3 + U4 = 60

Đầu tiên, ta sử dụng phương trình thứ hai để tìm U3: U3 = 60 - U4

Sau đó, thay giá trị của U3 vào phương trình thứ nhất: U1 + U6 = 165 U1 + (U3 + 3q) = 165 U1 + (60 - U4 + 3q) = 165 U1 - U4 + 3q = 105 (1)

Tiếp theo, ta sử dụng phương trình thứ nhất để tìm U6: U6 = 165 - U1

Thay giá trị của U6 vào phương trình thứ hai: U3 + U4 = 60 (60 - U4) + U4 = 60 60 = 60 (2)

Từ phương trình (2), ta thấy rằng phương trình không chứa U4, do đó không thể giải ra giá trị của U4. Vì vậy, không thể tìm được giá trị cụ thể của U1 và q chỉ từ hai phương trình đã cho.

Để tìm số hạng đầu và công bội của cấp số nhân, ta sử dụng các phương trình đã cho:

a. U4 - U2 = 72 U5 - U3 = 144

Đầu tiên, ta sử dụng phương trình thứ nhất để tìm U4: U4 = U2 + 72

Sau đó, thay giá trị của U4 vào phương trình thứ hai: U5 - U3 = 144 (U2 + 2q) - U3 = 144 U2 - U3 + 2q = 144 (3)

Từ phương trình (3), ta thấy rằng phương trình không chứa U2, do đó không thể giải ra giá trị của U2 và q chỉ từ hai phương trình đã cho.

b. U1 - U3 + U5 = 65 U1 + U7 = 325

Đầu tiên, ta sử dụng phương trình thứ hai để tìm U7: U7 = 325 - U1

Sau đó, thay giá trị của U7 vào phương trình thứ nhất: U1 - U3 + U5 = 65 U1 - U3 + (U1 + 6q) = 65 2U1 - U3 + 6q = 65 (4)

Từ phương trình (4), ta thấy rằng phương trình không chứa U3, do đó không thể giải ra giá trị của U1 và q chỉ từ hai phương trình đã cho.

c. U3 + U5 = 90 U2 - U6 = 240

Đầu tiên, ta sử dụng phương trình thứ hai để tìm U6: U6 = U2 - 240

Sau đó, thay giá trị của U6 vào phương trình thứ nhất: U3 + U5 = 90 U3 + (U2 - 240 + 4q) = 90 U3 + U2 - 240 + 4q = 90 U3 + U2 + 4q = 330 (5)

Từ phương trình (5), ta thấy rằng phương trình không chứa U2, do đó không thể giải ra giá trị của U2 và q chỉ từ hai phương trình đã cho.

d. U1 + U2 + U3 = 14 U1 * U2 * U3 = 64

Đầu tiên, ta sử dụng phương trình thứ nhất để tìm U3: U3 = 14 - U1 - U2

Sau đó, thay giá trị của U3 vào phương trình thứ hai: U1 * U2 * (14 - U1 - U2) = 64

Phương trình này có dạng bậc ba và không thể giải ra giá trị cụ thể của U1 và U2 chỉ từ hai phương trình đã cho.

Tóm lại, không thể tìm được giá trị cụ thể của số hạng đầu và công bội của cấp số nhân chỉ từ các phương trình đã cho.

1 tháng 1 2017

Chọn A

Phương pháp:

Cấp số cộng ( u n )  có công sai d

u n = u 1 + ( n - 1 ) d

d = u n - u 1 n - 1

Cách giải:

u 3 2 + u 4 2 = ( u 1 + 2 d ) 2 + ( u 1 + 3 d ) 2

= ( u 1 - 8 ) 2 + ( u 1 - 12 ) 2

= 2 ( u 1 - 10 ) 2 + 8 ≥ 8

Vậy u 3 2 + u 4 2 đạt giá trị nhỏ nhất khi  u 1 = 10

⇒ u 2019 = - 8062

22 tháng 6 2017

Đáp án là A

12 tháng 1 2018

 Đáp án B

Ta có