K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

Đáp án là C

Số đoạn thẳng tạo thành từ n điểm phân biệt trong đó không có ba điểm nào thẳng hàng là: n(n - 1)/2 (n ≥ 2; n ∈ N)

Theo đề bài có 28 đoạn thẳng được tạo thành nên ta có: n(n - 1)/2 = 28 ⇒ n(n - 1) = 56 = 8.7

Nhận thấy (n - 1) và n là hai số tự nhiên liên tiếp, suy ra n = 8.

23 tháng 1 2017

ai biết thí giúp mình với mình k cho

23 tháng 1 2017

sakura caaujpits ko giúp mình đi

17 tháng 10 2020

Nhanh vote nhé😀

23 tháng 4

VVote cái gì mà vote lo giải đề đi

27 tháng 9 2016

hoc chua

29 tháng 9 2016

dễ xong rùi

 

31 tháng 12 2017

ta có qua 2 điểm ta vẽ được 1 đường thẳng

              3điểm ta vẽ được 2đương thẳng

              n điểm ta vẽ được n(n-1):2 đường thẳng

28 tháng 5 2023

- Nếu trong n điểm không có 3 điểm nào thẳng hàng thì số đường thẳng kẻ được là \(\dfrac{n\left(n-1\right)}{2}\) đường.

- Số đường thẳng bị giảm nếu n điểm trong đó không có 3 điểm nào thẳng hàng trở thành n điểm thẳng hàng là: \(\dfrac{n\left(n-1\right)}{2}-1\) đường.

- Số đường thẳng tạo bởi 100 điểm phân biệt trong đó không có 3 điểm nào thẳng hàng là: \(\dfrac{100.99}{2}=4950\) đường.

- Theo đề bài ta có: \(4950-\left(\dfrac{n\left(n-1\right)}{2}-1\right)=4915\)

\(\Leftrightarrow n\left(n-1\right)=72\)

\(\Leftrightarrow n^2-n-72=0\)

Giải phương trình trên ta được \(n=9\left(n\right)\) hay \(n=-8\) (loại)

Vậy n=9.

14 tháng 12 2017

Tam giác cần lập thuộc hai loại

Loại 1: Tam giác có một đỉnh thuộc d1 và hai đỉnh thuộc d2. Loại này có  tam giác.

Loại 2: Tam giác có một đỉnh thuộc d2 và hai đỉnh thuộc d1. Loại này có  tam giác.

Theo bài ra ta có:

Chọn A.

7 tháng 5 2017

Tam giác cần lập thuộc hai loại

Loại 1: Tam giác có một đỉnh thuộc d 1 và hai đỉnh thuộc d 2 .

Loại này có C 10 1 . C n 2  tam giác.

Loại 2: Tam giác có một đỉnh thuộc  d 2  và hai đỉnh thuộc  d 1 .

Loại này có C 10 2 . C n 1  tam giác.

Theo bài ra ta có:  C 10 1 . C n 2 + C 10 2 . C n 1 = 2800

⇔ 10 n ( n − 1 ) 2 + 45 n = 2800 ⇔ n 2 + 8 n − 560 = 0 ⇔ n = 20

Chọn đáp án D

16 tháng 12 2019

Gọi n điểm đã cho là: \(A_1;A_2;A_3;...;A_n\); n\(\ge\)2.

Vì không có 3 điểm nào thẳng hàng nên :

+) Nối  \(A_1\) với ( n - 1) điểm còn lại ta có: ( n - 1) đường thẳng.

 +) Nối  \(A_2\) với ( n - 1) điểm còn lại ta có: ( n - 1) đường thẳng.

+) Nối  \(A_3\) với ( n - 1) điểm còn lại ta có: ( n - 1) đường thẳng.

...

+) Nối  \(A_3\) với ( n - 1) điểm còn lại ta có: ( n - 1) đường thẳng.

Như chúng ta có: n ( n - 1) đường thẳng

Tuy nhiên mỗi đường thẳng được tính 2 lần (  VD như nối \(A_1\)với \(A_2\)ta có đường thẳng \(A_1\)\(A_2\); còn nối  \(A_2\)với \(A_1\)ta có đường thẳng \(A_2\)\(A_1\); và 2 đường thẳng   \(A_1\)\(A_2\)\(A_2\)\(A_1\) trùng nhau )

=> Do đó số đường thẳng phân biệt là: n ( n - 1) : 2.

Ta thấy: Trong n điểm phân biệt cho trước, cứ qua 1 điểm ta vẽ được n - 1 đường thẳng. Vậy qua n điểm ta vẽ được n(n - 1) đoạn thẳng.

Nhưng nếu tính vậy thì mỗi đường thẳng sẽ bị tính đi tính lại 2 lần

Vậy số đoạn thẳng phân biệt được tạo ra từ n điểm phân biệt trên là: \(\frac{n\left(n-1\right)}{2}\)(đường thẳng)