K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2017

Áp dụng định lí Pytago vào tam giác ABC ta có:

B C 2 = A B 2 + A C 2 suy ra: A B 2 = B C 2 - A C 2 = 20 2 - 12 2 = 256

Nên AB = 16cm

* Xét tam giác AHB và tam giác CAB có:

Bài tập: Các trường hợp đồng dạng của tam giác vuông | Lý thuyết và Bài tập Toán 8 có đáp án

Suy ra: Δ AHB và CAB đồng dạng ( g.g) .

Bài tập: Các trường hợp đồng dạng của tam giác vuông | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án D

17 tháng 1 2016

*Bạn tự vẽ hình nhé!

Áp dụng đ/lí Pi-ta-go trong tam giác ABC vuông tại A có:

BC2 = AB2 + AC2

hay BC2 = 202 + 152

=> BC2 = 625 = 252

=> BC = 25 (cm)

Áp dụng đ/lí Pi-ta-go trong tam giác AHB vuông tại H có:

AB2 = AH2 + HB2

=> BH2 = AB2 - AH2

=> BH2 = 202 - 122

=> BH2 = 256 = 162

=> BH = 16 (cm)

Mà H thuộc BC nên H nằm giữa BC

=> BH + HC = BC

=> 16 + HC = 25

=> HC = 25 - 16

=> HC = 9 (cm)

Vậy BC = 25 cm; BH = 16 cm; CH = 9 cm.

17 tháng 1 2016

mọi người giúp mk nha

 

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=20^2-12^2=256\)

hay AC=16(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{12^2}{20}=7.2\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{16^2}{20}=12.8\left(cm\right)\end{matrix}\right.\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow AH^2=AB^2-HB^2=12^2-7.2^2=92.16\)

hay AH=9,6(cm)

Vậy: AC=16cm; BH=7,2cm; CH=12,8cm; AH=9,6cm

22 tháng 2 2021

sai bets

 

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow AB^2=12^2+16^2=400\)

hay AB=20(cm)

Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow HC^2=AC^2-AH^2=20^2-12^2=256\)

hay HC=16(cm)

Ta có: BH+HC=BC(H nằm giữa B và C)

nên BC=16+16=32(cm)

Chu vi của tam giác ABC là:

\(C_{ABC}=AB+BC+AC=20+32+20=72\left(cm\right)\)

AH
Akai Haruma
Giáo viên
29 tháng 3 2021

Lời giải:

Áp dụng định lý Pitago cho tam giác $AHC$ vuông tại $H$:

$HC=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=16$ (cm)

Áp dụng định lý Pitago cho tam giác $AHB$ vuông tại $H$:

$AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+16^2}=20$ (cm)

Chu vi tam giác $ABC$:

$AB+BC+AC=AB+BH+CH+AC=20+16+16+20=72$ (cm)

Tam giác AHC vuông tại H nên :

AC2 = AH2 + HC2

202 = 122 + HC2

=> HC2 = 202 - 122

HC2 = 400 - 144 = 256 = 162

=> HC = 16 cm

Ta có : BC = HC + HB = 16 + 5 = 21 cm

Tam giác ABH vuông tại H nên :

AB2 = AH2 + HB2

AB2 = 122 + 52

AB2 = 144 + 25 = 169 = 132

=> AB = 13 cm

Vậy chu vi tam giác ABC là :

AB + AC + BC = 13 + 20 + 21 = 54 (cm)

16 tháng 4 2020

chu vi là 54 cm

25 tháng 2 2021

△ABC vuông tại A có \(BC^2=AB^2+AC^2\\ \Rightarrow BC=\sqrt{15^2+20^2}=25\left(cm\right)\)

\(\Rightarrow CH=BC-BH=25-9=16\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=15^2+20^2=625\)

hay BC=25(cm)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên CH=BC-BH=25-9=16(cm)

Vậy: CH=16cm

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cma) Chứng tỏ tam giác ABC vuông tại A.b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC =...
Đọc tiếp

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm

a) Chứng tỏ tam giác ABC vuông tại A.

b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.

2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.

3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.

4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC

a) Chứng minh tam giác AHB = tam giác AHC

b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.

5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I

a) Chứng minh tam giác AIB = tam giác AIC

b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.

c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.

6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.

a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.

b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.

c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.

Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(

5
7 tháng 4 2020

Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)

8 tháng 4 2020

Do tam giác ABC có

AB = 3 , AC = 4 , BC = 5

Suy ra ta được

(3*3)+(4*4)=5*5  ( định lý pi ta go) 

9 + 16 = 25

Theo định lý py ta go thì tam giác abc vuông tại A