K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2021

Bạn tham khảo câu trả lời của mình tại :

Câu hỏi của Nguyễn Tiến Duy - Toán lớp 7 - Học trực tuyến OLM

10 tháng 11 2021

Vì \(\hept{\begin{cases}\left(x+5\right)^{2020}=x+\left(5^{1010}\right)^2≥0∀x\\\left|y-2021\right|≥0∀y\end{cases}}\Rightarrow A=\left(x+5\right)^{2020}+\left|y-2021\right|+2020\ge2020∀x,y\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+5=0\\y-2021=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=2021\end{cases}}\)

10 tháng 11 2021

Ta có:\(\left(x+5\right)^{20}\ge0\) 

\(\left|y-2021\right|\ge0\)
\(\Rightarrow A=\left(x+5\right)^{2020}+\left|y-2021\right|+2020\le2020\)

Dấu bằng xảy ra khi  \(x+5=0\Rightarrow x=-5\) ; \(y-2021=0\Rightarrow y=2021\)

Vậy, GTNN của A =2020 khi x=-5; y=2021

4 tháng 1 2020

\(P=\left|x-28\right|+\left|x-3\right|+\left|x-2020\right|\)

\(=\left(\left|x-3\right|+\left|x-2020\right|\right)+\left|x-28\right|\)

Đặt \(A=\left|x-3\right|+\left|x-2020\right|\)

Ta có: \(A=\left|x-3\right|+\left|x-2020\right|\)

                \(=\left|x-3\right|+\left|2020-x\right|\ge\left|x-3+2020-x\right|=2017\left(1\right)\)

Dấu"="xảy ra \(\Leftrightarrow\left(x-3\right)\left(2020-x\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\2020-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-3< 0\\2020-x< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le2020\end{cases}}\)hoặc \(\hept{\begin{cases}x< 3\\x>2020\end{cases}\left(loai\right)}\)

\(\Leftrightarrow3\le x\le2020\)

Ta có: \(\left|x-28\right|\ge0;\forall x\left(2\right)\)

Dấu"="xảy ra \(\Leftrightarrow\left|x-28\right|=0\)

                        \(\Leftrightarrow x=28\)

Từ (1) và (2)\(\Rightarrow A+\left|x-28\right|\ge2017\)

Hay \(P\ge2017\)

Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}3\le x\le2020\\x=28\end{cases}}\Leftrightarrow x=28\)

Vậy \(P_{min}=2017\Leftrightarrow x=28\)

3 tháng 1 2020

Điều kiện \(x\ne\frac{-2}{3},x\in Z\)

M=\(\frac{2019x-2020}{3x+2}=\frac{673\left(3x+2\right)-3366}{3x+2}=673-\frac{3366}{3x+2}\)

Với \(\hept{\begin{cases}x\in Z\\3x+2>0\end{cases}}\Rightarrow\hept{\begin{cases}x\in Z\\x>\frac{-2}{3}\end{cases}}\Rightarrow\frac{3366}{3x+2}>0\Rightarrow M>0\)

Với \(\hept{\begin{cases}x\in Z\\3x+2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x\in Z\\x< \frac{-2}{3}\end{cases}}\)

\(\Rightarrow\)Phân số \(\frac{3366}{3x+2}\)nhỏ nhất\(\Leftrightarrow\)mẫu nguyên âm lớn nhất

                                                        \(\Leftrightarrow3x+2=-1\) 

                                                       \(\Leftrightarrow\)\(3x=-3\)

                                                      \(\Leftrightarrow x=-1\)(Thảo mãn điều kiện)

Với x=-1 thì M=4039

Vậy Min M=4039\(\Leftrightarrow x=-1\)

14 tháng 7 2018

\(A=\left|x+1\right|+\left|y-2\right|\ge\left|x+1+y-2\right|=\left|x+y-1\right|=\left|5-1\right|=4\)

Dấu "=" xảy ra khi và chỉ khi: \(\left(x+1\right)\left(y-2\right)=\left|\left(x+1\right)\left(y-2\right)\right|\)

                                         <=> (x+1)(y-2) lớn hơn hoặc bằng 0

<=> x+1 lớn hơn hoặc bằng 0 và y-2 lớn hơn hoặc bằng 0

       x+1 bé hơn hoặc bằng 0 và y-2 bé hơn hoặc bằng 0

<=> x lớn hơn hoặc bằng -1 và y lớn hơn hoặc bằng 2

       x bé hơn hoặc bằng -1 và y bé hơn hoặc bằng 2

<=> x lớn hơn hoặc bằng 2

       x bé hơn hoặc bằng -1

Vậy Amin = 4 khi và chỉ khi x lớn hơn hoặc bằng 2 hoặc x bé hơn hoặc bằng -1

16 tháng 2 2020

a)Vì \(\hept{\begin{cases}\left|x+19\right|\ge0;\forall x,y\\\left|y-5\right|\ge0;\forall x,y\end{cases}\Rightarrow\left|x+19\right|+\left|y-5\right|\ge0;\forall x,y}\)

\(\Rightarrow\left|x+19\right|+\left|y-5\right|+1890\ge1890;\forall x,y\)

Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x+19\right|=0\\\left|y-5\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-19\\y=5\end{cases}}}\)

Vậy Min A=1890 \(\Leftrightarrow\hept{\begin{cases}x=-19\\y=5\end{cases}}\)

b)Vì \(\hept{\begin{cases}-\left|x-7\right|\le0;\forall x,y\\-\left|y+13\right|\le0;\forall x,y\end{cases}}\)\(\Rightarrow-\left|x-7\right|-\left|y+13\right|\le0;\forall x,y\)

\(\Rightarrow-\left|x-7\right|-\left|y+13\right|+1945\le1945;\forall x,y\)

Dấu"="Xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x-7\right|=0\\\left|y+13\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\\y=-13\end{cases}}\)

Vậy Max \(B=1945\Leftrightarrow\hept{\begin{cases}x=7\\y=-13\end{cases}}\)

16 tháng 12 2015

Vì |x-3| luôn lớn bằng 0 với mọi x

=> |x - 3| + (-100) luôn lớn bằng -100 với mọi x

=> A luôn lớn bằng 100

Dấu "=" xảy ra <=> |x-3| = 0

=> x - 3 = 0

=> x = 3

Vậy Min A = -100 <=> x = 3

16 tháng 12 2015

Ta có |x - 3| > 0

=> |x - 3| + (-100) > - 100

hay A > 100

Vậy GTNN của A là 100 <=> |x - 3| = 0 <=> x - 3 = 0 <=> x = 3

19 tháng 7 2016

A= x^2+2x +5

   =x^2+2x+1+4

   =(x+1)2 +4

=>Amin=4

19 tháng 7 2016

\(A=x^2+2x+5=\left(x^2+2x+1\right)+4=\left(x^2+2.x.1+1^2\right)+4\)

\(=\left(x+1\right)^2+4\)

\(\left(x+1\right)^2\ge0=>\left(x+1\right)^2+4\ge4\) (với mọi x)

Dấu "=" xảy ra \(< =>\left(x+1\right)^2=0< =>x=-1\)

Vậy minA=4 khi x=-1

26 tháng 12 2015

\(A=\left|x+y\right|+\left|x+3\right|+2014\ge0+0+2014=2014\) ; vì \(\left|x+3\right|\ge0\)\(;\left|x+y\right|\ge0\)

Min A =2014 khi x+3 =0 hay x =-3 

                        và x+y =0 hay y =-x = -(-3) = 3